Suppr超能文献

GWAS 和 eQTL 研究汇总数据的整合确定了冠心病的新风险基因。

Integration of summary data from GWAS and eQTL studies identified novel risk genes for coronary artery disease.

机构信息

Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine.

Zhejiang Chinese Medical University.

出版信息

Medicine (Baltimore). 2021 Mar 19;100(11):e24769. doi: 10.1097/MD.0000000000024769.

Abstract

Several genetic loci have been reported to be significantly associated with coronary artery disease (CAD) by multiple genome-wide association studies (GWAS). Nevertheless, the biological and functional effects of these genetic variants on CAD remain largely equivocal. In the current study, we performed an integrative genomics analysis by integrating large-scale GWAS data (N = 459,534) and 2 independent expression quantitative trait loci (eQTL) datasets (N = 1890) to determine whether CAD-associated risk single nucleotide polymorphisms (SNPs) exert regulatory effects on gene expression. By using Sherlock Bayesian, MAGMA gene-based, multidimensional scaling (MDS), functional enrichment, and in silico permutation analyses for independent technical and biological replications, we highlighted 4 susceptible genes (CHCHD1, TUBG1, LY6G6C, and MRPS17) associated with CAD risk. Based on the protein-protein interaction (PPI) network analysis, these 4 genes were found to interact with each other. We detected a remarkably altered co-expression pattern among these 4 genes between CAD patients and controls. In addition, 3 genes of CHCHD1 (P = .0013), TUBG1 (P = .004), and LY6G6C (P = .038) showed significantly different expressions between CAD patients and controls. Together, we provide evidence to support that these identified genes such as CHCHD1 and TUBG1 are indicative factors of CAD.

摘要

多个基因组范围关联研究(GWAS)报道了多个与冠状动脉疾病(CAD)显著相关的遗传位点。然而,这些遗传变异对 CAD 的生物学和功能影响在很大程度上仍存在争议。在本研究中,我们通过整合大规模 GWAS 数据(N=459534)和 2 个独立的表达数量性状基因座(eQTL)数据集(N=1890)进行了综合基因组学分析,以确定 CAD 相关风险单核苷酸多态性(SNP)是否对基因表达具有调节作用。通过使用 Sherlock Bayesian、MAGMA 基于基因的多维尺度分析(MDS)、功能富集和模拟置换分析进行独立的技术和生物学重复,我们突出了 4 个与 CAD 风险相关的易感基因(CHCHD1、TUBG1、LY6G6C 和 MRPS17)。基于蛋白质-蛋白质相互作用(PPI)网络分析,发现这 4 个基因相互作用。我们在 CAD 患者和对照组之间检测到这 4 个基因之间存在明显改变的共表达模式。此外,CHCHD1 中的 3 个基因(P=0.0013)、TUBG1(P=0.004)和 LY6G6C(P=0.038)的表达在 CAD 患者和对照组之间存在显著差异。综上所述,我们提供的证据支持了这些已识别的基因,如 CHCHD1 和 TUBG1,是 CAD 的指示因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a66/7982177/fe7bd0cb197c/medi-100-e24769-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验