Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China.
Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
BMC Pulm Med. 2020 Oct 16;20(1):270. doi: 10.1186/s12890-020-01303-7.
Severe asthma is a chronic disease contributing to disproportionate disease morbidity and mortality. From the year of 2007, many genome-wide association studies (GWAS) have documented a large number of asthma-associated genetic variants and related genes. Nevertheless, the molecular mechanism of these identified variants involved in asthma or severe asthma risk remains largely unknown.
In the current study, we systematically integrated 3 independent expression quantitative trait loci (eQTL) data (N = 1977) and a large-scale GWAS summary data of moderate-to-severe asthma (N = 30,810) by using the Sherlock Bayesian analysis to identify whether expression-related variants contribute risk to severe asthma. Furthermore, we performed various bioinformatics analyses, including pathway enrichment analysis, PPI network enrichment analysis, in silico permutation analysis, DEG analysis and co-expression analysis, to prioritize important genes associated with severe asthma.
In the discovery stage, we identified 1129 significant genes associated with moderate-to-severe asthma by using the Sherlock Bayesian analysis. Two hundred twenty-eight genes were prominently replicated by using MAGMA gene-based analysis. These 228 replicated genes were enriched in 17 biological pathways including antigen processing and presentation (Corrected P = 4.30 × 10), type I diabetes mellitus (Corrected P = 7.09 × 10), and asthma (Corrected P = 1.72 × 10). With the use of a series of bioinformatics analyses, we highlighted 11 important genes such as GNGT2, TLR6, and TTC19 as authentic risk genes associated with moderate-to-severe/severe asthma. With respect to GNGT2, there were 3 eSNPs of rs17637472 (P = 2.98 × 10 and P = 3.40 × 10), rs11265180 (P = 6.0 × 10 and P = 1.99 × 10), and rs1867087 (P = 1.0 × 10 and P = 1.84 × 10) identified. In addition, GNGT2 is significantly expressed in severe asthma compared with mild-moderate asthma (P = 0.045), and Gngt2 shows significantly distinct expression patterns between vehicle and various glucocorticoids (Anova P = 1.55 × 10).
Our current study provides multiple lines of evidence to support that these 11 identified genes as important candidates implicated in the pathogenesis of severe asthma.
重度哮喘是一种慢性疾病,会导致不成比例的疾病发病率和死亡率。自 2007 年以来,许多全基因组关联研究(GWAS)已经记录了大量与哮喘相关的遗传变异和相关基因。然而,这些已确定的与哮喘或重度哮喘风险相关的变异体的分子机制在很大程度上仍然未知。
在本研究中,我们通过使用 Sherlock 贝叶斯分析系统地整合了 3 个独立的表达数量性状基因座(eQTL)数据(N=1977)和一项大规模的中度至重度哮喘 GWAS 汇总数据(N=30810),以确定表达相关的变异是否会导致重度哮喘的风险。此外,我们进行了各种生物信息学分析,包括通路富集分析、PPI 网络富集分析、虚拟置换分析、DEG 分析和共表达分析,以确定与重度哮喘相关的重要基因。
在发现阶段,我们通过 Sherlock 贝叶斯分析确定了 1129 个与中度至重度哮喘相关的显著基因。使用 MAGMA 基于基因的分析,有 228 个基因得到了显著复制。这些 228 个复制的基因富集在 17 个生物学途径中,包括抗原加工和呈递(校正后 P=4.30×10)、1 型糖尿病(校正后 P=7.09×10)和哮喘(校正后 P=1.72×10)。通过一系列生物信息学分析,我们突出了 11 个重要基因,如 GNGT2、TLR6 和 TTC19,作为与中度至重度/重度哮喘相关的真实风险基因。对于 GNGT2,有 3 个 eSNP,rs17637472(P=2.98×10 和 P=3.40×10)、rs11265180(P=6.0×10 和 P=1.99×10)和 rs1867087(P=1.0×10 和 P=1.84×10)被确定。此外,与轻度至中度哮喘相比,GNGT2 在重度哮喘中显著表达(P=0.045),并且在载体和各种糖皮质激素之间,Gngt2 表现出明显不同的表达模式(Anova P=1.55×10)。
我们的研究提供了多方面的证据,支持这 11 个已确定的基因作为重度哮喘发病机制的重要候选基因。