Opt Express. 2021 Mar 1;29(5):7616-7629. doi: 10.1364/OE.416465.
Anomalous diffusion dynamics in confined nanoenvironments govern the macroscale properties and interactions of many biophysical and material systems. Currently, it is difficult to quantitatively link the nanoscale structure of porous media to anomalous diffusion within them. Fluorescence correlation spectroscopy super-resolution optical fluctuation imaging (fcsSOFI) has been shown to extract nanoscale structure and Brownian diffusion dynamics within gels, liquid crystals, and polymers, but has limitations which hinder its wider application to more diverse, biophysically-relevant datasets. Here, we parallelize the least-squares curve fitting step on a GPU improving computation times by up to a factor of 40, implement anomalous diffusion and two-component Brownian diffusion models, and make fcsSOFI more accessible by packaging it in a user-friendly GUI. We apply fcsSOFI to simulations of the protein fibrinogen diffusing in polyacrylamide of varying matrix densities and super-resolve locations where slower, anomalous diffusion occurs within smaller, confined pores. The improvements to fcsSOFI in speed, scope, and usability will allow for the wider adoption of super-resolution correlation analysis to diverse research topics.
受限纳米环境中的异常扩散动力学控制着许多生物物理和材料系统的宏观性质和相互作用。目前,很难将多孔介质的纳米结构与其中的异常扩散定量联系起来。荧光相关光谱超分辨率光学波动成像(fcsSOFI)已被证明可以提取凝胶、液晶和聚合物中的纳米结构和布朗扩散动力学,但存在限制,阻碍了其更广泛地应用于更多样化、与生物物理相关的数据集。在这里,我们在 GPU 上并行化最小二乘曲线拟合步骤,将计算时间提高了多达 40 倍,实现了异常扩散和双组分布朗扩散模型,并通过将其包装在用户友好的 GUI 中使其更易于使用。我们将 fcsSOFI 应用于在不同基质密度的聚丙烯酰胺中扩散的蛋白质纤维蛋白原的模拟中,并超分辨出较小的受限孔内较慢的异常扩散发生的位置。fcsSOFI 在速度、范围和可用性方面的改进将允许更广泛地采用超分辨率相关分析来研究各种研究课题。