Complexity Science Hub Vienna, Josefstädterstrasse 39, 1080 Vienna, Austria.
Austrian Institute of Technology, Giefinggasse 2, 1210 Vienna, Austria.
J R Soc Interface. 2021 Mar;18(176):20200705. doi: 10.1098/rsif.2020.0705. Epub 2021 Mar 17.
Urban scaling laws relate socio-economic, behavioural and physical variables to the population size of cities. They allow for a new paradigm of city planning and for an understanding of urban resilience and economics. The emergence of these power-law relations is still unclear. Improving our understanding of their origin will help us to better apply them in practical applications and further research their properties. In this work, we derive the basic exponents for spatially distributed variables from fundamental fractal geometric relations in cities. Sub-linear scaling arises as the ratio of the fractal dimension of the road network and of the distribution of the population embedded in three dimensions. Super-linear scaling emerges from human interactions that are constrained by the geometry of a city. We demonstrate the validity of the framework with data from 4750 European cities. We make several testable predictions, including the relation of average height of cities and population size, and the existence of a critical density above which growth changes from horizontal densification to three-dimensional growth.
城市标度定律将社会经济、行为和物理变量与城市人口规模联系起来。它们为城市规划提供了一种新的范例,并有助于理解城市的弹性和经济学。这些幂律关系的出现仍然不清楚。提高我们对其起源的理解将有助于我们在实际应用中更好地应用它们,并进一步研究它们的性质。在这项工作中,我们从城市中的基本分形几何关系推导出空间分布变量的基本指数。亚线性标度是由于道路网络的分形维数与嵌入三维中的人口分布的比例引起的。超线性标度是由人类的相互作用产生的,这些相互作用受到城市几何形状的限制。我们用来自 4750 个欧洲城市的数据验证了该框架的有效性。我们提出了几个可检验的预测,包括城市平均高度与人口规模的关系,以及存在一个临界密度,超过这个密度,增长将从水平密集化转变为三维增长。