Suppr超能文献

Cul3 调节大脑发育关键窗口期的细胞骨架蛋白动态平衡和细胞迁移。

Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development.

机构信息

Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.

Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy.

出版信息

Nat Commun. 2021 May 24;12(1):3058. doi: 10.1038/s41467-021-23123-x.

Abstract

De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). In mouse, constitutive Cul3 haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.

摘要

泛素连接酶编码基因 Cullin3(CUL3)的从头失能突变导致自闭症谱系障碍(ASD)。在小鼠中,Cul3 组成性杂合不足导致运动协调缺陷以及与 ASD 相关的社交和认知障碍。然而,生命后期诱导 Cul3 杂合不足不会导致与 ASD 相关的行为,这表明 Cul3 在关键发育窗口期具有重要作用。在这里,我们表明 Cul3 对于调节神经元迁移是必需的,因此,Cul3 杂合突变小鼠表现出皮质层状异常。在分子水平上,我们发现 Cul3 通过严格调节 Plastin3(Pls3)的量来控制神经元迁移,Pls3 是一个以前未被识别的神经迁移参与者。此外,我们发现 Pls3 通过调节肌动蛋白细胞骨架组织自主调节细胞迁移,其水平与神经迁移速度成反比。最后,我们提供的证据表明,与自闭症相关基因杂合不足相关的细胞表型可以通过体外对完整等位基因的转录激活来挽救,为 ASD 的潜在治疗方法提供了概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14cd/8144225/c8940d409ca9/41467_2021_23123_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验