Suppr超能文献

基于数据非依赖性采集的六株黑素瘤细胞系的蛋白质组和磷酸化蛋白质组特征分析揭示了蛋白质组类型的决定因素。

Data-independent acquisition-based proteome and phosphoproteome profiling across six melanoma cell lines reveals determinants of proteotypes.

机构信息

Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA.

出版信息

Mol Omics. 2021 Jun 14;17(3):413-425. doi: 10.1039/d0mo00188k.

Abstract

Human cancer cell lines are widely used in pharmacological and systems biological studies. The rapid documentation of the steady-state gene expression landscape of the cells used in a particular experiment may help to improve the reproducibility of scientific research. Here we applied a data-independent acquisition mass spectrometry (DIA-MS) method, coupled with a peptide spectral-library-free data analysis workflow, to measure both the proteome and phosphoproteome of a melanoma cell line panel with different metastatic properties. For each cell line, the single-shot DIA-MS detected 8100 proteins and almost 40 000 phosphopeptides in the respective measurements of two hours. Benchmarking the DIA-MS data towards the RNA-seq data and tandem mass tag (TMT)-MS results from the same set of cell lines demonstrated comparable qualitative coverage and quantitative reproducibility. Our data confirmed the high but complex mRNA-protein and protein-phospsite correlations. The results successfully established DIA-MS as a strong and competitive proteotyping approach for cell lines. The data further showed that all subunits of the glycosylphosphatidylinositol (GPI)-anchor transamidase complex were overexpressed in metastatic melanoma cells and identified altered phosphoprotein modules such as the BAF complex and mRNA splicing between metastatic and primary cells. This study provides a high-quality resource for calibrating DIA-MS performance, benchmarking DIA bioinformatic algorithms, and exploring the metastatic proteotypes in melanoma cells.

摘要

人类癌细胞系广泛应用于药理学和系统生物学研究。快速记录特定实验中使用的细胞的稳态基因表达图谱有助于提高科学研究的可重复性。在这里,我们应用了一种数据非依赖性采集质谱(DIA-MS)方法,结合无肽谱库数据分析工作流程,测量了具有不同转移特性的黑素瘤细胞系面板的蛋白质组和磷酸化蛋白质组。对于每个细胞系,单次 DIA-MS 在两小时的各自测量中检测到 8100 种蛋白质和近 40000 种磷酸肽。将 DIA-MS 数据与来自同一组细胞系的 RNA-seq 数据和串联质量标签(TMT)-MS 结果进行基准测试表明,定性覆盖和定量重现性相当。我们的数据证实了高但复杂的 mRNA-蛋白质和蛋白质磷酸化位点相关性。结果成功地将 DIA-MS 确立为细胞系的强大且具有竞争力的蛋白质组学方法。数据进一步表明,糖基磷脂酰肌醇(GPI)锚转酰胺酶复合物的所有亚基在转移性黑素瘤细胞中过度表达,并鉴定出改变的磷酸化蛋白模块,如 BAF 复合物和转移性和原发性细胞之间的 mRNA 剪接。本研究为校准 DIA-MS 性能、基准 DIA 生物信息学算法以及探索黑素瘤细胞中的转移性蛋白质组提供了高质量的资源。

相似文献

2
DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation.
Nat Commun. 2021 Nov 18;12(1):6685. doi: 10.1038/s41467-021-26979-1.
5
Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry.
Methods Enzymol. 2017;585:377-395. doi: 10.1016/bs.mie.2016.10.007. Epub 2016 Dec 24.
6
Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform.
Nat Commun. 2023 Jul 12;14(1):4154. doi: 10.1038/s41467-023-39869-5.
7
Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition.
Mol Cell Proteomics. 2020 Jan;19(1):181-197. doi: 10.1074/mcp.RA119.001714. Epub 2019 Nov 7.
8
A data-independent acquisition-based global phosphoproteomics system enables deep profiling.
Nat Commun. 2021 May 5;12(1):2539. doi: 10.1038/s41467-021-22759-z.
9
Sample Size-Comparable Spectral Library Enhances Data-Independent Acquisition-Based Proteome Coverage of Low-Input Cells.
Anal Chem. 2021 Dec 28;93(51):17003-17011. doi: 10.1021/acs.analchem.1c03477. Epub 2021 Dec 14.
10
Comparison of Protein Quantification in a Complex Background by DIA and TMT Workflows with Fixed Instrument Time.
J Proteome Res. 2019 Mar 1;18(3):1340-1351. doi: 10.1021/acs.jproteome.8b00898. Epub 2019 Feb 20.

引用本文的文献

2
Turnover atlas of proteome and phosphoproteome across mouse tissues and brain regions.
Cell. 2025 Apr 17;188(8):2267-2287.e21. doi: 10.1016/j.cell.2025.02.021. Epub 2025 Mar 20.
3
GABA receptor π forms channels that stimulate ERK through a G-protein-dependent pathway.
Mol Cell. 2025 Jan 2;85(1):166-176.e5. doi: 10.1016/j.molcel.2024.11.016. Epub 2024 Dec 5.
4
An Extensive Atlas of Proteome and Phosphoproteome Turnover Across Mouse Tissues and Brain Regions.
bioRxiv. 2024 Oct 17:2024.10.15.618303. doi: 10.1101/2024.10.15.618303.
5
Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry-Based Proteomics.
Mol Cell Proteomics. 2024 Aug;23(8):100800. doi: 10.1016/j.mcpro.2024.100800. Epub 2024 Jun 15.
6
EGFR targeting PhosTACs as a dual inhibitory approach reveals differential downstream signaling.
Sci Adv. 2024 Mar 29;10(13):eadj7251. doi: 10.1126/sciadv.adj7251. Epub 2024 Mar 27.
7
The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8 T cells.
Nat Commun. 2024 Jan 19;15(1):603. doi: 10.1038/s41467-024-44885-0.
8
SnapKin: a snapshot deep learning ensemble for kinase-substrate prediction from phosphoproteomics data.
NAR Genom Bioinform. 2023 Nov 6;5(4):lqad099. doi: 10.1093/nargab/lqad099. eCollection 2023 Dec.

本文引用的文献

3
Integrated Omics of Metastatic Colorectal Cancer.
Cancer Cell. 2020 Nov 9;38(5):734-747.e9. doi: 10.1016/j.ccell.2020.08.002. Epub 2020 Sep 3.
4
mRNAs, proteins and the emerging principles of gene expression control.
Nat Rev Genet. 2020 Oct;21(10):630-644. doi: 10.1038/s41576-020-0258-4. Epub 2020 Jul 24.
5
Proteome activity landscapes of tumor cell lines determine drug responses.
Nat Commun. 2020 Jul 20;11(1):3639. doi: 10.1038/s41467-020-17336-9.
6
: an online survival analysis webserver for skin cutaneous melanoma based on 1085 transcriptomic profiles.
Cancer Cell Int. 2020 May 19;20:176. doi: 10.1186/s12935-020-01262-3. eCollection 2020.
9
Quantitative Proteomics of the Cancer Cell Line Encyclopedia.
Cell. 2020 Jan 23;180(2):387-402.e16. doi: 10.1016/j.cell.2019.12.023.
10
Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines.
iScience. 2019 Nov 22;21:664-680. doi: 10.1016/j.isci.2019.10.059. Epub 2019 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验