Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
Environ Monit Assess. 2021 Mar 17;193(4):197. doi: 10.1007/s10661-021-08946-x.
Soil organic carbon (SOC) tends to form complexes with most metallic ions within the soil system. Relatively few studies compare SOC predictions via portable X-ray fluorescence (pXRF) measured data coupled with the Cubist algorithm. The current study applied three different Cubist models to estimate SOC while using several pXRF measured data. Soil samples (n = 158) were collected from the Litavka floodplain area during two separate sampling campaigns in 2018. Thirteen pXRF data or predictors (K, Ca, Rb, Mn, Fe, As, Ba, Th, Pb, Sr, Ti, Zr, and Zn) were selected to develop the proposed models. Validation and comparison of the models applied the mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R). The results revealed that Cubist 1, utilizing all the predictors yielded the best model outcome (MAE = 0.51%, RMSE = 0.68%, R = 0.78) followed by Cubist 2, using predictors with relatively high importance (VarImp. predictors) (MAE = 0.64%, RMSE = 0.82%, R = 0.68), and lastly Cubist 3 with predictors showing a significantly positive correlation (MAE = 0.69%, RMSE = 0.90%, R = 0.62). The Cubist 1 model was considered more promising for explaining the complex relationships between SOC and the pXRF data used. Moreover, for the estimation of SOC in temperate floodplain soils all the Cubist models gave an acceptable model. However, future research should focus on using other auxiliary data [e.g., soil properties, data from other sensors (e.g., FieldSpec)] as well as extend the study area to cover more soil types hence improve model robustness as well as parsimoniousness.
土壤有机碳(SOC)往往与土壤系统中的大多数金属离子形成复合物。相对较少的研究比较了通过便携式 X 射线荧光(pXRF)测量数据与 Cubist 算法相结合的 SOC 预测。本研究应用了三种不同的 Cubist 模型来估计 SOC,同时使用了多个 pXRF 测量数据。土壤样品(n=158)于 2018 年两次单独采样期间从利塔夫卡洪泛区收集。选择了 13 个 pXRF 数据或预测因子(K、Ca、Rb、Mn、Fe、As、Ba、Th、Pb、Sr、Ti、Zr 和 Zn)来开发提出的模型。应用平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R)验证和比较模型。结果表明,利用所有预测因子的 Cubist 1 产生了最佳模型结果(MAE=0.51%,RMSE=0.68%,R=0.78%),其次是利用相对重要性较高的预测因子(VarImp. predictors)的 Cubist 2(MAE=0.64%,RMSE=0.82%,R=0.68%),最后是具有显著正相关的预测因子的 Cubist 3(MAE=0.69%,RMSE=0.90%,R=0.62%)。Cubist 1 模型被认为更有希望解释 SOC 与所用 pXRF 数据之间的复杂关系。此外,对于温带洪泛区土壤 SOC 的估计,所有 Cubist 模型都给出了可接受的模型。然而,未来的研究应侧重于使用其他辅助数据(例如土壤特性、来自其他传感器的数据(例如 FieldSpec))以及扩展研究区域以覆盖更多土壤类型,从而提高模型的稳健性和简约性。