Suppr超能文献

利用集成模型结合便携式 X 射线荧光和可见近红外光谱技术来探索对农业土壤中砷进行制图和估算的可行性。

Using an ensemble model coupled with portable X-ray fluorescence and visible near-infrared spectroscopy to explore the viability of mapping and estimating arsenic in an agricultural soil.

机构信息

Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague-Suchdol, Czech Republic; The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Department of Landscape Ecology, Lidická 25/27, Brno, 602 00, Czech Republic.

Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague-Suchdol, Czech Republic.

出版信息

Sci Total Environ. 2022 Apr 20;818:151805. doi: 10.1016/j.scitotenv.2021.151805. Epub 2021 Nov 20.

Abstract

Increasing concentrations of potentially toxic elements (PTE) in agricultural soils remain a major source of public concern. Monitoring PTEs in an agricultural field with no history of contaminants necessitate adequate analysis utilizing a robust model to accurately uncover hidden PTEs. Detecting and mapping the distribution of soil properties using portable X-ray fluorescence (pXRF) and proximal sensing techniques is not only rapid, but also relatively inexpensive. In this study, an ensemble model, consisting of partial least square regression (PLSR), support vector machine (SVM), random forest (RF) and cubist, was used for the prediction and mapping of soil As content in an agricultural field with no history of pollution. The datasets were collected using pXRF and field spectroscopy techniques. The main goal was to compare the ensemble model to each of the calibration techniques in terms of prediction accuracy of As content in such a field. Other components [e.g., soil organic carbon (SOC), Mn, S, soil pH, Fe] that are known to influence As levels in the soil were also retrieved to assess their correlation with soil As. The models were evaluated using the root mean squared error (RMSE), the coefficient of determination (R) and the ratio of performance to interquartile range (RPIQ). In terms of prediction accuracy, the ensemble model outperformed each of the individual techniques (R = 0.80/0.75) and obtained the least error margin (RMSE = 1.91/2.16). Overall, all the predictive techniques were able to detect both low and high estimated values of soil As within the study field, but with the ensemble model resembling the measurements better. The ensemble model, a promising tool as demonstrated by the current study, is highly recommended to be included in future studies for more accurate estimation of As and other PTEs in other agricultural fields.

摘要

农田中不断增加的潜在有毒元素(PTE)浓度仍然是公众关注的主要问题。对于没有污染物历史的农田,监测 PTE 需要利用强大的模型进行充分分析,以准确揭示隐藏的 PTE。使用便携式 X 射线荧光(pXRF)和近地感测技术检测和绘制土壤特性的分布不仅快速,而且相对便宜。在这项研究中,使用了一个集成模型,包括偏最小二乘回归(PLSR)、支持向量机(SVM)、随机森林(RF)和立方算法,用于预测和绘制无污染农田中的土壤砷含量。数据集是使用 pXRF 和现场光谱技术收集的。主要目标是比较集成模型与每个校准技术在预测该农田中砷含量的准确性方面的差异。还检索了已知会影响土壤中砷水平的其他成分[例如,土壤有机碳(SOC)、Mn、S、土壤 pH 值、Fe],以评估它们与土壤砷的相关性。使用均方根误差(RMSE)、决定系数(R)和绩效与四分位距之比(RPIQ)评估模型。就预测精度而言,集成模型优于每个单独的技术(R=0.80/0.75),并且获得的误差幅度最小(RMSE=1.91/2.16)。总体而言,所有预测技术都能够检测到研究区域内土壤砷的低估计值和高估计值,但集成模型更能准确反映测量值。如本研究所示,集成模型是一种很有前途的工具,强烈建议在未来的研究中纳入该模型,以更准确地估计其他农田中的砷和其他 PTE。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验