Suppr超能文献

利用可见近红外光谱、便携式 X 射线荧光和 X 射线衍射技术预测土壤粘粒含量和阳离子交换量。

Prediction of Soil Clay Content and Cation Exchange Capacity Using Visible Near-Infrared Spectroscopy, Portable X-ray Fluorescence, and X-ray Diffraction Techniques.

机构信息

School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Eveleigh, NSW 2015, Australia.

出版信息

Environ Sci Technol. 2021 Apr 20;55(8):4629-4637. doi: 10.1021/acs.est.0c04130. Epub 2021 Mar 22.

Abstract

This article investigates a novel data fusion method to predict clay content and cation exchange capacity using visible near-infrared (visNIR) spectroscopy, portable X-ray fluorescence (pXRF), and X-ray diffraction (XRD) techniques. A total of 367 soil samples from two study areas in regional Australia were analyzed and intra- and interarea calibration options were explored. Cubist models were constructed using information from each device independently and in combination. pXRF produced the most accurate predictions of any individual device. Models based on fused data significantly improved the accuracy of predictions compared with those based on individual devices. The combination of pXRF and visNIR had the greatest performance. Overall, the relative increase in Lin's concordance correlation coefficient ranged from 1% to 12% and the corresponding decrease in root-mean-square error (RMSE) ranged from 10% to 46%. Provision of XRD data resulted in a decrease in observed RMSE values, although differences were not significant. Validation metrics were less promising when models were calibrated in one study area and then transferred to the other. Observed RMSE values were ∼2 to 3 times larger under this model transfer scenario and independent use of XRD was found to have the best overall performance.

摘要

本文研究了一种新的数据融合方法,用于使用可见近红外(visNIR)光谱、便携式 X 射线荧光(pXRF)和 X 射线衍射(XRD)技术预测粘粒含量和阳离子交换量。对澳大利亚两个研究区域的 367 个土壤样本进行了分析,并探讨了区内和区外的校准选项。使用每个设备的信息独立构建了 Cubist 模型,并进行了组合。pXRF 是任何单个设备中预测最准确的。与基于单个设备的模型相比,基于融合数据的模型显著提高了预测的准确性。pXRF 和 visNIR 的组合具有最佳的性能。总体而言,Lin 的一致性相关系数的相对增加幅度在 1%到 12%之间,而相应的均方根误差(RMSE)的减少幅度在 10%到 46%之间。提供 XRD 数据会降低观察到的 RMSE 值,但差异不显著。当在一个研究区域中校准模型然后转移到另一个研究区域时,验证指标的效果并不理想。在这种模型转移情况下,观察到的 RMSE 值大约大 2 到 3 倍,并且发现独立使用 XRD 的整体性能最佳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验