Acellera, 08005 Barcelona, Spain.
Computational Science Laboratory, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
J Chem Theory Comput. 2021 Apr 13;17(4):2355-2363. doi: 10.1021/acs.jctc.0c01343. Epub 2021 Mar 17.
Molecular dynamics simulations provide a mechanistic description of molecules by relying on empirical potentials. The quality and transferability of such potentials can be improved leveraging data-driven models derived with machine learning approaches. Here, we present TorchMD, a framework for molecular simulations with mixed classical and machine learning potentials. All force computations including bond, angle, dihedral, Lennard-Jones, and Coulomb interactions are expressed as PyTorch arrays and operations. Moreover, TorchMD enables learning and simulating neural network potentials. We validate it using standard Amber all-atom simulations, learning an ab initio potential, performing an end-to-end training, and finally learning and simulating a coarse-grained model for protein folding. We believe that TorchMD provides a useful tool set to support molecular simulations of machine learning potentials. Code and data are freely available at github.com/torchmd.
分子动力学模拟通过经验势为分子提供了一种机械描述。通过机器学习方法衍生的数据驱动模型可以提高这种势的质量和可转移性。在这里,我们介绍了 TorchMD,这是一个具有混合经典和机器学习势的分子模拟框架。所有的力计算,包括键、角、二面角、Lennard-Jones 和 Coulomb 相互作用,都表示为 PyTorch 数组和操作。此外,TorchMD 还支持学习和模拟神经网络势。我们使用标准的 Amber 全原子模拟进行了验证,学习了一个从头开始的势,进行了端到端的训练,最后学习和模拟了一个用于蛋白质折叠的粗粒模型。我们相信 TorchMD 提供了一套有用的工具来支持机器学习势的分子模拟。代码和数据可在 github.com/torchmd 上免费获取。