Greener Joe G
Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2426058122. doi: 10.1073/pnas.2426058122. Epub 2025 May 28.
The next generation of force fields for molecular dynamics will be developed using a wealth of data. Training systematically with experimental data remains a challenge, however, especially for machine-learning potentials. Differentiable molecular simulation calculates gradients of observables with respect to parameters through molecular dynamics trajectories. Here, we improve this approach by explicitly calculating gradients using a reverse-time simulation with effectively constant memory cost and a computation count similar to the forward simulation. The method is applied to learn all-atom water and gas diffusion models with different functional forms and to train a machine-learning potential for diamond from scratch. Comparison to ensemble reweighting indicates that reversible simulation can provide more accurate gradients and train to match time-dependent observables.
下一代用于分子动力学的力场将利用大量数据来开发。然而,系统地使用实验数据进行训练仍然是一项挑战,特别是对于机器学习势场而言。可微分子模拟通过分子动力学轨迹计算可观测量相对于参数的梯度。在此,我们通过使用反向时间模拟显式计算梯度来改进这种方法,其内存成本有效恒定,计算量与正向模拟相似。该方法被应用于学习具有不同函数形式的全原子水和气体扩散模型,并从零开始训练金刚石的机器学习势场。与系综重加权的比较表明,可逆模拟可以提供更准确的梯度,并训练以匹配与时间相关的可观测量。