IEEE Trans Cybern. 2022 Jul;52(7):5639-5653. doi: 10.1109/TCYB.2020.3044915. Epub 2022 Jul 4.
Deep probabilistic aspect models are widely utilized in document analysis to extract the semantic information and obtain descriptive topics. However, there are two problems that may affect their applications. One is that common words shared among all documents with low representational meaning may reduce the representation ability of learned topics. The other is introducing supervision information to hierarchical topic models to fully utilize the side information of documents that is difficult. To address these problems, in this article, we first propose deep diverse latent Dirichlet allocation (DDLDA), a deep hierarchical topic model that can yield more meaningful semantic topics with less common and meaningless words by introducing shared topics. Moreover, we develop a variational inference network for DDLDA, which helps us to further generalize DDLDA to a supervised deep topic model called max-margin DDLDA (mmDDLDA) by employing max-margin principle as the classification criterion. Compared to DDLDA, mmDDLDA can discover more discriminative topical representations. In addition, a continual hybrid method with stochastic-gradient MCMC and variational inference is put forward for deep latent Dirichlet allocation (DLDA)-based models to make them more practical in real-world applications. The experimental results demonstrate that DDLDA and mmDDLDA are more efficient than existing unsupervised and supervised topic models in discovering highly discriminative topic representations and achieving higher classification accuracy. Meanwhile, DLDA and our proposed models trained by the proposed continual learning approach cannot only show good performance on preventing catastrophic forgetting but also fit the evolving new tasks well.
深度概率方面模型在文档分析中被广泛应用于提取语义信息和获得描述性主题。然而,存在两个可能影响其应用的问题。一个是所有文档共有的具有低代表性意义的常见词可能会降低学习主题的表示能力。另一个是向层次主题模型引入监督信息以充分利用文档的边信息是困难的。为了解决这些问题,本文首先提出了深度多样潜在狄利克雷分配(DDLDA),这是一种深度层次主题模型,通过引入共享主题,可以用较少的常见和无意义的词生成更有意义的语义主题。此外,我们为 DDLDA 开发了一个变分推理网络,通过使用最大间隔原则作为分类标准,帮助我们将 DDLDA 进一步推广为一个称为最大间隔 DDLDA(mmDDLDA)的有监督深度主题模型。与 DDLDA 相比,mmDDLDA 可以发现更具辨别力的主题表示。此外,提出了一种基于随机梯度 MCMC 和变分推理的连续混合方法,用于基于深度潜在狄利克雷分配(DLDA)的模型,使其在实际应用中更实用。实验结果表明,DDLDA 和 mmDDLDA 在发现高度可辨别主题表示和实现更高分类精度方面比现有的无监督和监督主题模型更有效。同时,通过所提出的持续学习方法训练的 DLDA 和我们提出的模型不仅可以在防止灾难性遗忘方面表现良好,而且还可以很好地适应不断变化的新任务。