文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于网络分析的药物-靶点相互作用景观。

A landscape for drug-target interactions based on network analysis.

机构信息

Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, México.

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México.

出版信息

PLoS One. 2021 Mar 17;16(3):e0247018. doi: 10.1371/journal.pone.0247018. eCollection 2021.


DOI:10.1371/journal.pone.0247018
PMID:33730052
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7968663/
Abstract

In this work, we performed an analysis of the networks of interactions between drugs and their targets to assess how connected the compounds are. For our purpose, the interactions were downloaded from the DrugBank database, and we considered all drugs approved by the FDA. Based on topological analysis of this interaction network, we obtained information on degree, clustering coefficient, connected components, and centrality of these interactions. We identified that this drug-target interaction network cannot be divided into two disjoint and independent sets, i.e., it is not bipartite. In addition, the connectivity or associations between every pair of nodes identified that the drug-target network is constituted of 165 connected components, where one giant component contains 4376 interactions that represent 89.99% of all the elements. In this regard, the histamine H1 receptor, which belongs to the family of rhodopsin-like G-protein-coupled receptors and is activated by the biogenic amine histamine, was found to be the most important node in the centrality of input-degrees. In the case of centrality of output-degrees, fostamatinib was found to be the most important node, as this drug interacts with 300 different targets, including arachidonate 5-lipoxygenase or ALOX5, expressed on cells primarily involved in regulation of immune responses. The top 10 hubs interacted with 33% of the target genes. Fostamatinib stands out because it is used for the treatment of chronic immune thrombocytopenia in adults. Finally, 187 highly connected sets of nodes, structured in communities, were also identified. Indeed, the largest communities have more than 400 elements and are related to metabolic diseases, psychiatric disorders and cancer. Our results demonstrate the possibilities to explore these compounds and their targets to improve drug repositioning and contend against emergent diseases.

摘要

在这项工作中,我们对药物与其靶标之间相互作用的网络进行了分析,以评估这些化合物的连接程度。为此,我们从 DrugBank 数据库中下载了这些相互作用,并考虑了所有经 FDA 批准的药物。基于对这个相互作用网络的拓扑分析,我们获得了关于这些相互作用的度数、聚类系数、连通分量和中心性的信息。我们发现,这个药物-靶标相互作用网络不能分为两个不相交且独立的集合,也就是说,它不是二分的。此外,通过对每对节点的连接性或关联性的识别,我们发现药物-靶标网络由 165 个连通分量组成,其中一个巨型分量包含 4376 个相互作用,占所有元素的 89.99%。在这方面,属于视紫红质样 G 蛋白偶联受体家族并被生物胺组胺激活的组胺 H1 受体,被发现是输入度数中心性中最重要的节点。在输出度数中心性方面,发现 fostamatinib 是最重要的节点,因为这种药物与 300 个不同的靶标相互作用,包括细胞中主要参与免疫反应调节的花生四烯酸 5-脂氧合酶或 ALOX5。前 10 个枢纽与 33%的靶基因相互作用。 fostamatinib 之所以脱颖而出,是因为它被用于治疗成人慢性免疫性血小板减少症。最后,还确定了 187 个高度连接的节点集,这些节点集以社区的形式组织在一起。事实上,最大的社区有超过 400 个元素,与代谢疾病、精神疾病和癌症有关。我们的研究结果表明,可以探索这些化合物及其靶标,以改善药物重新定位并应对新兴疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/e3bd62057b97/pone.0247018.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/3174350277d4/pone.0247018.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/69349c511188/pone.0247018.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/404da2083453/pone.0247018.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/5c1feec1b7e9/pone.0247018.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/e3bd62057b97/pone.0247018.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/3174350277d4/pone.0247018.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/69349c511188/pone.0247018.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/404da2083453/pone.0247018.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/5c1feec1b7e9/pone.0247018.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358b/7968663/e3bd62057b97/pone.0247018.g005.jpg

相似文献

[1]
A landscape for drug-target interactions based on network analysis.

PLoS One. 2021

[2]
A weighted and integrated drug-target interactome: drug repurposing for schizophrenia as a use case.

BMC Syst Biol. 2015

[3]
Design of a tripartite network for the prediction of drug targets.

J Comput Aided Mol Des. 2018-1-16

[4]
Exploring drug-target interaction networks of illicit drugs.

BMC Genomics. 2013-10-1

[5]
A computational approach to finding novel targets for existing drugs.

PLoS Comput Biol. 2011-9-1

[6]
The analysis of the drug-targets based on the topological properties in the human protein-protein interaction network.

J Drug Target. 2009-8

[7]
Identification of putative drug targets for human sperm-egg interaction defect using protein network approach.

BMC Syst Biol. 2015-7-18

[8]
SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.

BMC Med Genomics. 2020-4-3

[9]
DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank.

Bioinformatics. 2016-6-15

[10]
Some Remarks on Prediction of Drug-Target Interaction with Network Models.

Curr Top Med Chem. 2017

引用本文的文献

[1]
Prioritizing FDA approved therapeutics for treating sepsis phenotypes: A network modeling approach based on neutrophil proteomics.

Front Immunol. 2025-8-14

[2]
and Studies of Potential Novel Vitamin K Epoxide Reductase (VKOR) Inhibitors Suggest an Updated Structure-Activity Relationship.

ACS Omega. 2025-6-13

[3]
The Dawn till Dusk of phytopharmaceuticals.

Saudi Pharm J. 2024-11

[4]
A Machine Learning Algorithm Suggests Repurposing Opportunities for Targeting Selected GPCRs.

Int J Mol Sci. 2024-9-23

[5]
Loureirin B improves H/R-induced hepatic ischemia-reperfusion injury by downregulating ALOX5 to regulate mitochondrial homeostasis.

Naunyn Schmiedebergs Arch Pharmacol. 2024-10

[6]
Machine learning hypothesis-generation for patient stratification and target discovery in rare disease: our experience with Open Science in ALS.

Front Comput Neurosci. 2024-1-4

[7]
Network neighborhood operates as a drug repositioning method for cancer treatment.

PeerJ. 2023

[8]
Drug-Disease Severity and Target-Disease Severity Interaction Networks in COVID-19 Patients.

Pharmaceutics. 2022-8-30

[9]
Network pharmacology reveals multitarget mechanism of action of drugs to be repurposed for COVID-19.

Front Pharmacol. 2022-8-17

[10]
BETA: a comprehensive benchmark for computational drug-target prediction.

Brief Bioinform. 2022-7-18

本文引用的文献

[1]
Coronavirus breakthrough: dexamethasone is first drug shown to save lives.

Nature. 2020-6

[2]
Predicting associations among drugs, targets and diseases by tensor decomposition for drug repositioning.

BMC Bioinformatics. 2019-12-16

[3]
The Role of Zinc in Antiviral Immunity.

Adv Nutr. 2019-7-1

[4]
Alcohol intake enhances glutamatergic transmission from D2 receptor-expressing afferents onto D1 receptor-expressing medium spiny neurons in the dorsomedial striatum.

Neuropsychopharmacology. 2019-2-7

[5]
Network-Based Methods for Prediction of Drug-Target Interactions.

Front Pharmacol. 2018-10-9

[6]
MicroRNA-small molecule association identification: from experimental results to computational models.

Brief Bioinform. 2020-1-17

[7]
Drug Repurposing for Viral Infectious Diseases: How Far Are We?

Trends Microbiol. 2018-5-11

[8]
Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: Results of two phase 3, randomized, placebo-controlled trials.

Am J Hematol. 2018-5-15

[9]
Histamine Excites Striatal Dopamine D1 and D2 Receptor-Expressing Neurons via Postsynaptic H1 and H2 Receptors.

Mol Neurobiol. 2018-3-1

[10]
DrugBank 5.0: a major update to the DrugBank database for 2018.

Nucleic Acids Res. 2018-1-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索