Suppr超能文献

网络药理学揭示了可重新用于治疗新冠肺炎的药物的多靶点作用机制。

Network pharmacology reveals multitarget mechanism of action of drugs to be repurposed for COVID-19.

作者信息

Alegría-Arcos Melissa, Barbosa Tábata, Sepúlveda Felipe, Combariza German, González Janneth, Gil Carmen, Martínez Ana, Ramírez David

机构信息

Facultad de Ingeniería y Negocios, Universidad de Las Américas, Sede Providencia, Santiago, Chile.

Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá, Colombia.

出版信息

Front Pharmacol. 2022 Aug 17;13:952192. doi: 10.3389/fphar.2022.952192. eCollection 2022.

Abstract

The coronavirus disease 2019 pandemic accelerated drug/vaccine development processes, integrating scientists all over the globe to create therapeutic alternatives against this virus. In this work, we have collected information regarding proteins from SARS-CoV-2 and humans and how these proteins interact. We have also collected information from public databases on protein-drug interactions. We represent this data as networks that allow us to gain insights into protein-protein interactions between both organisms. With the collected data, we have obtained statistical metrics of the networks. This data analysis has allowed us to find relevant information on which proteins and drugs are the most relevant from the network pharmacology perspective. This method not only allows us to focus on viral proteins as the main targets for COVID-19 but also reveals that some human proteins could be also important in drug repurposing campaigns. As a result of the analysis of the SARS-CoV-2-human interactome, we have identified some old drugs, such as disulfiram, auranofin, gefitinib, suloctidil, and bromhexine as potential therapies for the treatment of COVID-19 deciphering their potential complex mechanism of action.

摘要

2019年冠状病毒病大流行加速了药物/疫苗的研发进程,促使全球科学家联合起来,共同研发针对该病毒的治疗方案。在这项研究中,我们收集了有关严重急性呼吸综合征冠状病毒2(SARS-CoV-2)和人类蛋白质以及这些蛋白质如何相互作用的信息。我们还从公共数据库中收集了蛋白质-药物相互作用的信息。我们将这些数据表示为网络,以便深入了解两种生物体之间的蛋白质-蛋白质相互作用。利用收集到的数据,我们获得了网络的统计指标。数据分析使我们能够从网络药理学角度找出哪些蛋白质和药物最为相关。这种方法不仅使我们能够将病毒蛋白作为治疗2019冠状病毒病的主要靶点,还揭示了一些人类蛋白质在药物重新利用研究中也可能具有重要意义。通过对SARS-CoV-2-人类相互作用组的分析,我们确定了一些旧药,如双硫仑、金诺芬、吉非替尼、舒洛地尔和溴己新,它们可能是治疗2019冠状病毒病的潜在疗法,并解读了它们潜在的复杂作用机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ae/9424758/6f59ca84893f/fphar-13-952192-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验