Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, Thailand.
School of Information Technology, KMUTT, Thung Khru, Bangkok, Thailand.
PLoS One. 2021 Mar 17;16(3):e0248682. doi: 10.1371/journal.pone.0248682. eCollection 2021.
A new web server called PhotoModPlus is presented as a platform for predicting photosynthetic proteins via genome neighborhood networks (GNN) and genome neighborhood-based machine learning. GNN enables users to visualize the overview of the conserved neighboring genes from multiple photosynthetic prokaryotic genomes and provides functional guidance on the query input. In the platform, we also present a new machine learning model utilizing genome neighborhood features for predicting photosynthesis-specific functions based on 24 prokaryotic photosynthesis-related GO terms, namely PhotoModGO. The new model performed better than the sequence-based approaches with an F1 measure of 0.872, based on nested five-fold cross-validation. Finally, we demonstrated the applications of the webserver and the new model in the identification of novel photosynthetic proteins. The server is user-friendly, compatible with all devices, and available at bicep.kmutt.ac.th/photomod.
一个名为 PhotoModPlus 的新网络服务器被提出,作为一个通过基因组邻域网络 (GNN) 和基于基因组邻域的机器学习来预测光合作用蛋白的平台。GNN 使用户能够可视化来自多个光合原核基因组的保守邻接基因的概述,并为查询输入提供功能指导。在该平台中,我们还提出了一个新的机器学习模型,利用基因组邻域特征,基于 24 个原核光合作用相关 GO 术语,预测光合作用特有的功能,即 PhotoModGO。新模型的表现优于基于序列的方法,在嵌套五折交叉验证中,F1 度量值为 0.872。最后,我们展示了该服务器和新模型在鉴定新型光合作用蛋白中的应用。该服务器用户友好,兼容所有设备,可在 bicep.kmutt.ac.th/photomod 上使用。