Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
Research School of Chemistry, ANU, Canberra, Australia.
Science. 2018 Jun 15;360(6394):1210-1213. doi: 10.1126/science.aar8313.
Photosystems I and II convert solar energy into the chemical energy that powers life. Chlorophyll a photochemistry, using red light (680 to 700 nm), is near universal and is considered to define the energy "red limit" of oxygenic photosynthesis. We present biophysical studies on the photosystems from a cyanobacterium grown in far-red light (750 nm). The few long-wavelength chlorophylls present are well resolved from each other and from the majority pigment, chlorophyll a. Charge separation in photosystem I and II uses chlorophyll f at 745 nm and chlorophyll f (or d) at 727 nm, respectively. Each photosystem has a few even longer-wavelength chlorophylls f that collect light and pass excitation energy uphill to the photochemically active pigments. These photosystems function beyond the red limit using far-red pigments in only a few key positions.
光系统 I 和 II 将太阳能转化为为生命提供动力的化学能量。叶绿素 a 的光化学作用,利用红光(680 到 700nm),几乎是普遍存在的,并且被认为定义了产氧光合作用的能量“红色极限”。我们介绍了在远红(750nm)光下生长的蓝细菌中的光系统的生物物理研究。少数长波长叶绿素彼此以及与大多数色素叶绿素 a 很好地分离。光系统 I 和 II 中的电荷分离分别使用 745nm 的叶绿素 f 和 727nm 的叶绿素 f(或 d)。每个光系统都有少数更长波长的叶绿素 f 吸收光并将激发能量向上传递到光化学活性色素。这些光系统仅在少数关键位置使用远红色素,超越了红色极限发挥作用。