Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine.
Helmholtz Institute for Pharmaceutical Research, Saarland Campus, Building C2.3, 66123, Saarbrucken, Germany.
World J Microbiol Biotechnol. 2021 Mar 17;37(4):62. doi: 10.1007/s11274-021-03030-5.
Certain point mutations within gene for ribosomal protein S12, rpsL, are known to dramatically change physiological traits of bacteria, most prominently antibiotic resistance and production of various metabolites. The rpsL mutants are usually searched among spontaneous mutants resistant to aminoglycoside antibiotics, such as streptomycin or paromomycin. The shortcomings of traditional selection are as follows: random rpsL mutants may carry undesired genome alterations; many rpsL mutations cannot be isolated because they are either not associated with increased antibiotic resistance or non-viable in the absence of intact rpsL gene. Introduction of mutant rpsL alleles in the rpsL background can be used to circumvent these obstacles. Here we take the latter approach and report the generation and properties of a set of stable rpsL merodiploids for Streptomyces albus J1074. We identified several rpsL alleles that enhance endogenous and heterologous antibiotic production by this strain and show that rpsLrpsL merodiploid displays increased streptomycin resistance. We further tested several promising rpsL alleles in two more strains, Streptomyces cyanogenus S136 and Streptomyces ghanaensis ATCC14672. In S136, plasmid-borne rpsL and rpsL led to elevated landomycin production; no changes were detected for ATCC14672 merodiploids. Our data outline the prospects for and limitations to rpsL merodiploids as a tool for rapid enhancement of secondary metabolism in Streptomyces.
核糖体蛋白 S12 基因(rpsL)中的某些点突变已知会极大地改变细菌的生理特性,最显著的是抗生素抗性和各种代谢产物的产生。rpsL 突变体通常在对抗生素如链霉素或巴龙霉素具有抗性的自发突变体中被筛选出来。传统筛选方法存在以下缺点:随机 rpsL 突变体可能携带不需要的基因组改变;许多 rpsL 突变体不能被分离,因为它们要么与抗生素抗性增加无关,要么在 rpsL 基因完整的情况下无法存活。引入突变的 rpsL 等位基因可以克服这些障碍。在这里,我们采用后一种方法,报道了一套稳定的白色链霉菌 J1074 的 rpsL 部分二倍体的产生和特性。我们鉴定了几个 rpsL 等位基因,这些等位基因增强了该菌株的内源性和异源抗生素的产生,并表明 rpsLrpsL 部分二倍体显示出增强的链霉素抗性。我们进一步在另外两个菌株,链霉菌氰基 S136 和链霉菌加纳 S136 中测试了几种有前途的 rpsL 等位基因。在 S136 中,质粒携带的 rpsL 和 rpsL 导致放线菌素产量增加;而 ATCC14672 部分二倍体没有变化。我们的数据概述了 rpsL 部分二倍体作为快速增强链霉菌次级代谢的工具的前景和局限性。