Suppr超能文献

人半月板的黏弹性和平衡剪切特性:与组织结构和成分的关系。

Viscoelastic and equilibrium shear properties of human meniscus: Relationships with tissue structure and composition.

机构信息

Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States.

Department of Chemical and Materials Engineering, University of Naples, Naples, Italy.

出版信息

J Biomech. 2021 May 7;120:110343. doi: 10.1016/j.jbiomech.2021.110343. Epub 2021 Mar 1.

Abstract

The meniscus is crucial in maintaining the knee function and protecting the joint from secondary pathologies, including osteoarthritis. Although most of the mechanical properties of human menisci have been characterized, to our knowledge, its dynamic shear properties have never been reported. Moreover, little is known about meniscal shear properties in relation to tissue structure and composition. This is crucial to understand mechanisms of meniscal injury, as well as, in regenerative medicine, for the design and development of tissue engineered scaffolds mimicking the native tissue. Hence, the objective of this study was to characterize the dynamic and equilibrium shear properties of human meniscus in relation to its anisotropy and composition. Specimens were prepared from the axial and the circumferential anatomical planes of medial and lateral menisci. Frequency sweeps and stress relaxation tests yielded storage (G') and loss moduli (G″), and equilibrium shear modulus (G). Correlations of moduli with water, glycosaminoglycans (GAGs), and collagen content were investigated. The meniscus exhibited viscoelastic behavior. Dynamic shear properties were related to tissue composition: negative correlations were found between G', G″ and G, and meniscal water content; positive correlations were found for G' and G″ with GAG and collagen (only in circumferential samples). Circumferential samples, with collagen fibers orthogonal to the shear plane, exhibited superior dynamic mechanical properties, with G' ~70 kPa and G″ ~10 kPa, compared to those of the axial plane ~15 kPa and ~1 kPa, respectively. Fiber orientation did not affect the values of G, which ranged from ~50 to ~100 kPa.

摘要

半月板对于维持膝关节功能和保护关节免受继发性病变(包括骨关节炎)至关重要。尽管已经对人半月板的大部分力学性能进行了描述,但据我们所知,其动态剪切性能从未被报道过。此外,关于半月板剪切性能与组织结构和组成的关系,人们知之甚少。这对于理解半月板损伤的机制以及再生医学中设计和开发模仿天然组织的组织工程支架至关重要。因此,本研究的目的是表征人半月板的动态和平衡剪切性能与其各向异性和组成的关系。标本取自内侧和外侧半月板的轴向和周向解剖平面。频率扫描和应力松弛测试得出了储能模量(G')和损耗模量(G")以及平衡剪切模量(G)。研究了模量与水、糖胺聚糖(GAGs)和胶原含量的相关性。半月板表现出粘弹性行为。动态剪切性能与组织组成有关:G'、G"和 G 与半月板含水量呈负相关;G'和 G"与 GAG 和胶原呈正相关(仅在周向样本中)。与剪切平面正交的胶原纤维的周向样本表现出更高的动态力学性能,G'约为 70 kPa,G"约为 10 kPa,而轴向样本分别约为 15 kPa 和 1 kPa。纤维取向不影响 G 的值,其范围约为 50 至 100 kPa。

相似文献

1
Viscoelastic and equilibrium shear properties of human meniscus: Relationships with tissue structure and composition.
J Biomech. 2021 May 7;120:110343. doi: 10.1016/j.jbiomech.2021.110343. Epub 2021 Mar 1.
2
Compressive Properties and Hydraulic Permeability of Human Meniscus: Relationships With Tissue Structure and Composition.
Front Bioeng Biotechnol. 2021 Feb 10;8:622552. doi: 10.3389/fbioe.2020.622552. eCollection 2020.
3
Heterogeneity of dynamic shear properties of the meniscus: A comparison between tissue core and surface layers.
J Orthop Res. 2023 Jul;41(7):1607-1617. doi: 10.1002/jor.25495. Epub 2022 Dec 10.
6
Viscoelastic shear properties of the equine medial meniscus.
J Orthop Res. 1991 Jul;9(4):550-8. doi: 10.1002/jor.1100090411.
7
Mechanical properties of meniscal circumferential fibers using an inverse finite element analysis approach.
J Mech Behav Biomed Mater. 2022 Feb;126:105073. doi: 10.1016/j.jmbbm.2022.105073. Epub 2022 Jan 5.
8
Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus.
J Mech Behav Biomed Mater. 2011 Nov;4(8):2024-30. doi: 10.1016/j.jmbbm.2011.06.022. Epub 2011 Jul 7.
9
Anisotropic viscoelastic shear properties of bovine meniscus.
Clin Orthop Relat Res. 1994 Sep(306):34-45.

引用本文的文献

1
Biomechanics of horizontal meniscus tear and healing during knee flexion: Finite element analysis.
Mechanobiol Med. 2025 Mar 13;3(2):100128. doi: 10.1016/j.mbm.2025.100128. eCollection 2025 Jun.
3
[Tissue biomechanics: connective tissue characterization : Cluster tissue biomechanics].
Orthopadie (Heidelb). 2024 Jul;53(7):503-510. doi: 10.1007/s00132-024-04517-3. Epub 2024 Jun 3.
5
Assessing the role of surface layer and molecular probe size in diffusion within meniscus tissue.
PLoS One. 2024 Apr 16;19(4):e0301432. doi: 10.1371/journal.pone.0301432. eCollection 2024.
6
Age influence on resistance and deformation of the human sutured meniscal horn in the immediate postoperative period.
Front Bioeng Biotechnol. 2024 Jan 5;11:1249982. doi: 10.3389/fbioe.2023.1249982. eCollection 2023.
7
Tensile energy dissipation and mechanical properties of the knee meniscus: relationship with fiber orientation, tissue layer, and water content.
Front Bioeng Biotechnol. 2023 May 31;11:1205512. doi: 10.3389/fbioe.2023.1205512. eCollection 2023.
8
Effect of molecular weight and tissue layer on solute partitioning in the knee meniscus.
Osteoarthr Cartil Open. 2023 Apr 8;5(2):100360. doi: 10.1016/j.ocarto.2023.100360. eCollection 2023 Jun.
9
Biomechanical properties of porcine meniscus as determined via AFM: Effect of region, compartment and anisotropy.
PLoS One. 2023 Jan 20;18(1):e0280616. doi: 10.1371/journal.pone.0280616. eCollection 2023.
10
Strain-Dependent Diffusivity of Small and Large Molecules in Meniscus.
J Biomech Eng. 2022 Nov 1;144(11). doi: 10.1115/1.4054931.

本文引用的文献

1
Dynamic compression of human and ovine meniscal tissue compared with a potential thermoplastic elastomer hydrogel replacement.
J Biomed Mater Res A. 2017 Oct;105(10):2722-2728. doi: 10.1002/jbm.a.36129. Epub 2017 Jun 27.
2
Anisotropy in the viscoelastic response of knee meniscus cartilage.
J Appl Biomater Funct Mater. 2017 Jan 26;15(1):e77-e83. doi: 10.5301/jabfm.5000319.
4
Meniscal tears associated with anterior cruciate ligament injury.
Arch Orthop Trauma Surg. 2015 Dec;135(12):1701-6. doi: 10.1007/s00402-015-2309-4. Epub 2015 Aug 19.
5
A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics.
J Athl Train. 2013 Nov-Dec;48(6):810-7. doi: 10.4085/1062-6050-48.6.03. Epub 2013 Oct 23.
6
The basic science of human knee menisci: structure, composition, and function.
Sports Health. 2012 Jul;4(4):340-51. doi: 10.1177/1941738111429419.
7
Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus.
J Mech Behav Biomed Mater. 2011 Nov;4(8):2024-30. doi: 10.1016/j.jmbbm.2011.06.022. Epub 2011 Jul 7.
8
Regional variation in the mechanical role of knee meniscus glycosaminoglycans.
J Appl Physiol (1985). 2011 Dec;111(6):1590-6. doi: 10.1152/japplphysiol.00848.2011. Epub 2011 Sep 8.
9
Meniscal repair versus partial meniscectomy: a systematic review comparing reoperation rates and clinical outcomes.
Arthroscopy. 2011 Sep;27(9):1275-88. doi: 10.1016/j.arthro.2011.03.088. Epub 2011 Aug 6.
10
The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration.
Biomaterials. 2011 Oct;32(30):7411-31. doi: 10.1016/j.biomaterials.2011.06.037. Epub 2011 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验