Hillier Joseph, Ono Keiji, Ibukuro Kouta, Liu Fayong, Li Zuo, Husain Khaled Muhammad, Nicholas Rutt Harvey, Tomita Isao, Tsuchiya Yoshishige, Ishibashi Koji, Saito Shinichi
School of Electronics and Computer Science, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom.
Advanced Device Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
Nanotechnology. 2021 Apr 7;32(26). doi: 10.1088/1361-6528/abef91.
Single hole transport and spin detection is achievable in standard p-type silicon transistors owing to the strong orbital quantization of disorder based quantum dots. Through the use of the well acting as a pseudo-gate, we discover the formation of a double-quantum dot system exhibiting Pauli spin-blockade and investigate the magnetic field dependence of the leakage current. This enables attributes that are key to hole spin state control to be determined, where we calculate a tunnel couplingof 57eV and a short spin-orbit lengthof 250 nm. The demonstrated strong spin-orbit interaction at the interface when using disorder based quantum dots supports electric-field mediated control. These results provide further motivation that a readily scalable platform such as industry standard silicon technology can be used to investigate interactions which are useful for quantum information processing.
由于基于无序量子点的强轨道量子化,在标准p型硅晶体管中可实现单空穴传输和自旋检测。通过将阱用作伪栅极,我们发现了一个表现出泡利自旋阻塞的双量子点系统的形成,并研究了漏电流的磁场依赖性。这使得能够确定空穴自旋态控制的关键属性,我们计算出隧穿耦合为57eV,自旋轨道长度短至250nm。使用基于无序量子点时在界面处表现出的强自旋轨道相互作用支持电场介导的控制。这些结果进一步表明,诸如工业标准硅技术这样易于扩展的平台可用于研究对量子信息处理有用的相互作用。