Holder Samuel W, Grant Samuel C, Mohammadigoushki Hadi
Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States.
Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.
Langmuir. 2021 Mar 30;37(12):3585-3596. doi: 10.1021/acs.langmuir.0c03486. Epub 2021 Mar 18.
Diffusion studies using nuclear magnetic resonance (NMR) spectroscopy were conducted on two model surfactant solutions of cetyltrimethylammonium bromide/sodium salicylate (CTAB/NaSal) and cetylpyridinium chloride/sodium salicylate (CPCl/NaSal). By increasing the salt-to-surfactant concentration ratio, these systems display two peaks in the zero-shear viscosity and relaxation time, which are indicative of transitions from linear to branched micellar networks. The goal of this work is to assess the sensitivity of NMR diffusometry to different types of micellar microstructures and identify the mechanism(s) of surfactant self-diffusion in micellar solutions. At low salt-to-surfactant concentration ratios, for which wormlike micelles are linear, the surfactant self-diffusion is best described by a mean squared displacement, , that varies as ∝ , where is the diffusion time. As the salt concentration increases to establish branched micelles, ∝ , indicating a Brownian-like self-diffusion of surfactant molecules in branched micelles. This result indicates that NMR diffusometry is capable of differentiating various types of micellar microstructures. In addition, the self-diffusion coefficient of the surfactant molecules in linear and branched micelles are determined, for the first time, by comparing the existing restricted diffusion models and are shown to be much slower than the diffusion of proton molecules in the bulk. Moreover, in linear and moderately branched wormlike micelles, the dominant mechanism of surfactant self-diffusion is through the curvilinear diffusion of the surfactant molecules along the contour length of the micelles, whereas in the branched micelles, before the second viscosity maxima, the surfactant self-diffusion could arise from a combination of micellar breakage, exchange between micelles and/or the bulk.
使用核磁共振(NMR)光谱对十六烷基三甲基溴化铵/水杨酸钠(CTAB/NaSal)和十六烷基吡啶氯化物/水杨酸钠(CPCl/NaSal)的两种模型表面活性剂溶液进行了扩散研究。通过增加盐与表面活性剂的浓度比,这些体系在零剪切粘度和弛豫时间上显示出两个峰值,这表明从线性胶束网络向支化胶束网络的转变。这项工作的目标是评估NMR扩散测定法对不同类型胶束微观结构的敏感性,并确定胶束溶液中表面活性剂自扩散的机制。在低盐与表面活性剂浓度比下,蠕虫状胶束呈线性,表面活性剂自扩散最好用平均平方位移来描述,其随扩散时间呈 ∝ 变化。随着盐浓度增加以形成支化胶束,呈 ∝ ,表明表面活性剂分子在支化胶束中进行类似布朗运动的自扩散。这一结果表明NMR扩散测定法能够区分各种类型的胶束微观结构。此外,通过比较现有的受限扩散模型,首次确定了线性和支化胶束中表面活性剂分子的自扩散系数,结果表明其比质子分子在本体中的扩散慢得多。此外,在直线状和适度支化的蠕虫状胶束中,表面活性剂自扩散的主要机制是表面活性剂分子沿胶束轮廓长度的曲线扩散,而在支化胶束中,在第二个粘度最大值出现之前,表面活性剂自扩散可能源于胶束破裂、胶束与本体之间的交换和/或两者的组合。