School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
Big Data Institute, Central South University, Changsha, 410083, China.
Sci Rep. 2021 Mar 17;11(1):6173. doi: 10.1038/s41598-021-84684-x.
Identification of Influential nodes in complex networks is challenging due to the largely scaled data and network sizes, and frequently changing behaviors of the current topologies. Various application scenarios like disease transmission and immunization, software virus infection and disinfection, increased product exposure and rumor suppression, etc., are applicable domains in the corresponding networks where identification of influential nodes is crucial. Though a lot of approaches are proposed to address the challenges, most of the relevant research concentrates only on single and limited aspects of the problem. Therefore, we propose Global Structure Model (GSM) for influential nodes identification that considers self-influence as well as emphasizes on global influence of the node in the network. We applied GSM and utilized Susceptible Infected Recovered model to evaluate its efficiency. Moreover, various standard algorithms such as Betweenness Centrality, Profit Leader, H-Index, Closeness Centrality, Hyperlink Induced Topic Search, Improved K-shell Hybrid, Density Centrality, Extended Cluster Coefficient Ranking Measure, and Gravity Index Centrality are employed as baseline benchmarks to evaluate the performance of GSM. Similarly, we used seven real-world and two synthetic multi-typed complex networks along-with different well-known datasets for experiments. Results analysis indicates that GSM outperformed the baseline algorithms in identification of influential node(s).
由于大规模的数据和网络规模,以及当前拓扑结构的频繁变化行为,识别复杂网络中的影响节点是具有挑战性的。各种应用场景,如疾病传播和免疫、软件病毒感染和消毒、增加产品曝光和谣言抑制等,都适用于相应网络中的关键影响节点识别领域。虽然已经提出了许多方法来解决这些挑战,但大多数相关研究只集中在问题的单一和有限方面。因此,我们提出了用于识别影响节点的全局结构模型(GSM),该模型既考虑了自我影响,又强调了节点在网络中的全局影响。我们应用了 GSM,并利用易感染、感染和恢复模型来评估其效率。此外,还使用了各种标准算法,如介数中心度、利润领导者、H-指数、接近中心度、超链接诱导主题搜索、改进的 K-壳混合、密度中心度、扩展聚类系数排序度量和重力指数中心度,作为基准来评估 GSM 的性能。同样,我们使用了七个真实世界和两个合成的多类型复杂网络,以及不同的知名数据集进行实验。结果分析表明,GSM 在识别影响节点方面优于基准算法。