Suppr超能文献

接触持续时间作为边缘特征在疫情传播分析中的相关性。

Pertinence of contact duration as edge feature for epidemic spread analysis.

作者信息

Shetty Ramya D, Bhattacharjee Shrutilipi

机构信息

Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Department of Information Technology, National Institute of Technology Karnataka, Surathkal, 575025, India.

出版信息

Sci Rep. 2025 Mar 28;15(1):10703. doi: 10.1038/s41598-025-94637-3.

Abstract

Identifying superspreading nodes has attracted greater attention because of its wide practical significance in various applications. Existing studies consider the edges mostly equally while designing the algorithms for the unweighted contact networks, where each connection explicitly shows whether the individuals are in contact or not. It will not consider other relevant information in the context of epidemiology study or infectious disease spread, such as proximity or total time spent between the contact nodes. The recent studies focused on the weighted network, where most of the methods have computed the edge weights by utilizing degree and k-shell measure, which captures the topological structure of the network but not the interaction duration between pair of contacts. In this study, we mainly aim to generate weighted networks to model the pathogen spread by optimal calculation of the edge weight in terms of contact duration (time spent) between individual contacts. Leveraging this interaction duration as the edge weight, we further design a novel technique, namely Real Weighted Influence (RWInf), for identifying the superspreading nodes during an epidemic outbreak. The empirical study revealed that the proposed approach outperforms with an improvement of 0.146-0.473 kendall's score in comparison with baseline approaches.

摘要

识别超级传播节点因其在各种应用中的广泛实际意义而备受关注。现有研究在为无加权接触网络设计算法时,大多同等看待边,在这种网络中,每条连接明确显示个体是否有接触。它不会考虑流行病学研究或传染病传播背景下的其他相关信息,比如接触节点之间的接近程度或总接触时间。近期研究聚焦于加权网络,其中大多数方法通过利用度和k - 壳测度来计算边的权重,这种方法能捕捉网络的拓扑结构,但无法体现接触对之间的相互作用持续时间。在本研究中,我们主要旨在通过根据个体接触之间的接触持续时间(花费的时间)对边权重进行优化计算,来生成加权网络以模拟病原体传播。利用这种相互作用持续时间作为边权重,我们进一步设计了一种新颖的技术,即实加权影响(RWInf),用于在疫情爆发期间识别超级传播节点。实证研究表明,与基线方法相比,所提出的方法表现更优,肯德尔分数提高了0.146 - 0.473。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4de/11953441/1499993596bb/41598_2025_94637_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验