Suppr超能文献

通过图神经网络方法在社交网络中检测具有拓扑结构的有影响力节点。

Detecting influential nodes with topological structure via Graph Neural Network approach in social networks.

作者信息

Bhattacharya Riju, Nagwani Naresh Kumar, Tripathi Sarsij

机构信息

Department of Computer Science and Engineering, National Institute of Technology Raipur, GE Road, Raipur, Chhattisgarh 492010 India.

Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, Uttar Pradesh 211004 India.

出版信息

Int J Inf Technol. 2023;15(4):2233-2246. doi: 10.1007/s41870-023-01271-1. Epub 2023 May 6.

Abstract

Detecting influential nodes in complex social networks is crucial due to the enormous amount of data and the constantly changing behavior of existing topologies. Centrality-based and machine-learning approaches focus mostly on node topologies or feature values in their evaluation of nodes' relevance. However, both network topologies and node attributes should be taken into account when determining the influential value of nodes. This research has proposed a deep learning model called Graph Convolutional Networks (GCN) to discover the significant nodes in graph-based large datasets. A deep learning framework for identifying influential nodes with structural centrality via Graph Convolutional Networks called DeepInfNode has been developed. The proposed approach measures up contextual information from Susceptible-Infected-Recovered (SIR) model trials to measure the rate of infection to develop node representations. In the experimental section, acquired experimental results indicate that the suggested model has a higher F1 and Area under the curve (AUC) value. The findings indicate that the strategy is both effective and precise in terms of suggesting new linkages. The proposed DeepInfNode model outperforms state-of-the-art approaches on a variety of publicly available standard graph datasets, achieving an increase in performance of up to 99.1% of accuracy.

摘要

由于数据量巨大以及现有拓扑结构的行为不断变化,在复杂社交网络中检测有影响力的节点至关重要。基于中心性和机器学习的方法在评估节点相关性时,大多侧重于节点拓扑结构或特征值。然而,在确定节点的影响力值时,网络拓扑结构和节点属性都应予以考虑。本研究提出了一种名为图卷积网络(GCN)的深度学习模型,用于在基于图的大型数据集中发现重要节点。已开发出一个通过图卷积网络识别具有结构中心性的有影响力节点的深度学习框架,称为DeepInfNode。所提出的方法通过易感-感染-恢复(SIR)模型试验来衡量感染率,从而测量上下文信息,以生成节点表示。在实验部分,获得的实验结果表明,所建议的模型具有更高的F1值和曲线下面积(AUC)值。研究结果表明,该策略在推荐新联系方面既有效又精确。所提出的DeepInfNode模型在各种公开可用的标准图数据集上优于现有方法,准确率提高了99.1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbfc/10163927/61deff63c497/41870_2023_1271_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验