Suppr超能文献

基于协方差的异构数据样本选择:在基因表达和自闭症风险基因检测中的应用。

Covariance-based sample selection for heterogeneous data: Applications to gene expression and autism risk gene detection.

作者信息

Lin Kevin Z, Liu Han, Roeder Kathryn

机构信息

Carnegie Mellon University, Department of Statistics & Data Science, Pittsburgh, PA.

Northwestern University, Department of Electrical Engineering and Computer Science, Evanston, IL.

出版信息

J Am Stat Assoc. 2021;116(533):54-67. doi: 10.1080/01621459.2020.1738234. Epub 2020 Apr 13.

Abstract

Risk for autism can be influenced by genetic mutations in hundreds of genes. Based on findings showing that genes with highly correlated gene expressions are functionally interrelated, "guilt by association" methods such as DAWN have been developed to identify these autism risk genes. Previous research analyze the BrainSpan dataset, which contains gene expression of brain tissues from varying regions and developmental periods. Since the spatiotemporal properties of brain tissue is known to affect the gene expression's covariance, previous research have focused only on a specific subset of samples to avoid the issue of heterogeneity. This analysis leads to a potential loss of power when detecting risk genes. In this article, we develop a new method called COBS (COvariance-Based sample Selection) to find a larger and more homogeneous subset of samples that share the same population covariance matrix for the downstream DAWN analysis. To demonstrate COBS's effectiveness, we use genetic risk scores from two sequential data freezes obtained in 2014 and 2020. We show COBS improves DAWN's ability to predict risk genes detected in the newer data freeze when using the risk scores of the older data freeze as input.

摘要

数百个基因的基因突变会影响患自闭症的风险。基于研究结果表明,具有高度相关基因表达的基因在功能上是相互关联的,诸如DAWN之类的“关联定罪”方法已被开发出来以识别这些自闭症风险基因。先前的研究分析了BrainSpan数据集,该数据集包含来自不同区域和发育时期的脑组织的基因表达。由于已知脑组织的时空特性会影响基因表达的协方差,因此先前的研究仅关注特定的样本子集以避免异质性问题。这种分析在检测风险基因时会导致潜在的效能损失。在本文中,我们开发了一种名为COBS(基于协方差的样本选择)的新方法,以找到一个更大且更同质的样本子集,该子集共享相同的总体协方差矩阵用于下游的DAWN分析。为了证明COBS的有效性,我们使用了2014年和2020年获得的两个连续数据冻结版本中的遗传风险评分。我们表明,当使用较旧数据冻结版本的风险评分作为输入时,COBS提高了DAWN预测在较新数据冻结版本中检测到的风险基因的能力。

相似文献

2
NETWORK ASSISTED ANALYSIS TO REVEAL THE GENETIC BASIS OF AUTISM.网络辅助分析揭示自闭症的遗传基础。
Ann Appl Stat. 2015;9(3):1571-1600. doi: 10.1214/15-AOAS844. Epub 2015 Nov 2.
5
Predicting the Risk Genes of Autism Spectrum Disorders.预测自闭症谱系障碍的风险基因。
Front Genet. 2021 Jun 14;12:665469. doi: 10.3389/fgene.2021.665469. eCollection 2021.
8
Gene expression analysis with the parametric bootstrap.
Biostatistics. 2001 Dec;2(4):445-61. doi: 10.1093/biostatistics/2.4.445.

本文引用的文献

2
Stochastic block models: A comparison of variants and inference methods.随机块模型:变体和推断方法的比较。
PLoS One. 2019 Apr 23;14(4):e0215296. doi: 10.1371/journal.pone.0215296. eCollection 2019.
3
Global spectral clustering in dynamic networks.动态网络中的全局谱聚类。
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):927-932. doi: 10.1073/pnas.1718449115. Epub 2018 Jan 16.
5
NETWORK ASSISTED ANALYSIS TO REVEAL THE GENETIC BASIS OF AUTISM.网络辅助分析揭示自闭症的遗传基础。
Ann Appl Stat. 2015;9(3):1571-1600. doi: 10.1214/15-AOAS844. Epub 2015 Nov 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验