Wu Wenbin, Kennedy Taylor, Arguello-Miranda Orlando, Lin Kevin Z
Department of Statistics, University of Washington.
Department of Plant and Microbial Biology, North Carolina State University.
bioRxiv. 2025 Jul 6:2024.11.23.624995. doi: 10.1101/2024.11.23.624995.
Quantifying the inheritance of protein regulation during asymmetric cell division remains a challenge due to the complexity of these systems and the lack of a formal mathematical definition. We introduce ODEinherit, a new statistical framework leveraging ordinary differential equations (ODEs) to measure how much a mother cell's regulatory network is passed on to its daughters, addressing this gap. ODEinherit first estimates cell-specific regulatory networks through ODE systems, incorporating novel adjustments for non-oscillatory trajectories. Then, inheritance is quantified by evaluating how well a mother's regulatory network explains its daughter's trajectories. We demonstrate that precise quantification of this inheritance relies on pruning and adjustment for the network density. We benchmark ODEinherit on simulated data and apply it to live-cell, time-lapse microscopy data, where we track the expression dynamics of six proteins across 85 dividing cells over eight hours. Our results reveal substantial heterogeneity in inheritance rates among mother-daughter pairs, paving the way for applications in cellular stress response and cell-fate prediction studies across generations.
由于这些系统的复杂性以及缺乏正式的数学定义,量化不对称细胞分裂过程中蛋白质调控的遗传情况仍然是一项挑战。我们引入了ODEinherit,这是一个新的统计框架,它利用常微分方程(ODE)来衡量母细胞的调控网络传递给其女儿细胞的程度,从而填补了这一空白。ODEinherit首先通过ODE系统估计细胞特异性调控网络,并对非振荡轨迹进行了新的调整。然后,通过评估母细胞的调控网络对其女儿细胞轨迹的解释程度来量化遗传情况。我们证明,这种遗传情况的精确量化依赖于对网络密度的修剪和调整。我们在模拟数据上对ODEinherit进行了基准测试,并将其应用于活细胞延时显微镜数据,在该数据中,我们在八小时内跟踪了85个分裂细胞中六种蛋白质的表达动态。我们的结果揭示了母女细胞对之间遗传率的显著异质性,为跨代细胞应激反应和细胞命运预测研究的应用铺平了道路。