Suppr超能文献

发现冥王星:一种基于分析的安全数据生态系统方法。

Finding Pluto: An Analytics-Based Approach to Safety Data Ecosystems.

作者信息

Barker Thomas T

机构信息

The University of Alberta, Faculty of Extension, Canada.

出版信息

Saf Health Work. 2021 Mar;12(1):1-9. doi: 10.1016/j.shaw.2020.09.010. Epub 2020 Oct 1.

Abstract

This review article addresses the role of safety professionals in the diffusion strategies for predictive analytics for safety performance. The article explores the models, definitions, roles, and relationships of safety professionals in knowledge application, access, management, and leadership in safety analytics. The article addresses challenges safety professionals face when integrating safety analytics in organizational settings in four operations areas: application, technology, management, and strategy. A review of existing conventional safety data sources (safety data, internal data, external data, and context data) is briefly summarized as a baseline. For each of these data sources, the article points out how emerging analytic data sources (such as Industry 4.0 and the Internet of Things) broaden and challenge the scope of work and operational roles throughout an organization. In doing so, the article defines four perspectives on the integration of predictive analytics into organizational safety practice: the programmatic perspective, the technological perspective, the sociocultural perspective, and knowledge-organization perspective. The article posits a four-level, organizational knowledge-skills-abilities matrix for analytics integration, indicating key organizational capacities needed for each area. The work shows the benefits of organizational alignment, clear stakeholder categorization, and the ability to predict future safety performance.

摘要

这篇综述文章探讨了安全专业人员在安全绩效预测分析的传播策略中的作用。文章探讨了安全专业人员在安全分析的知识应用、获取、管理和领导方面的模型、定义、角色及关系。文章阐述了安全专业人员在四个运营领域(应用、技术、管理和战略)将安全分析整合到组织环境中时所面临的挑战。作为基线,简要总结了对现有传统安全数据源(安全数据、内部数据、外部数据和上下文数据)的综述。对于这些数据源中的每一个,文章指出新兴分析数据源(如工业4.0和物联网)如何拓宽并挑战整个组织的工作范围和运营角色。在此过程中,文章定义了将预测分析整合到组织安全实践中的四个视角:规划视角、技术视角、社会文化视角和知识组织视角。文章提出了一个用于分析整合的四级组织知识-技能-能力矩阵,指出了每个领域所需的关键组织能力。这项工作展示了组织协调一致、明确利益相关者分类以及预测未来安全绩效的能力所带来的好处。

相似文献

4
Concurrence of big data analytics and healthcare: A systematic review.大数据分析与医疗保健的并存:系统评价。
Int J Med Inform. 2018 Jun;114:57-65. doi: 10.1016/j.ijmedinf.2018.03.013. Epub 2018 Mar 26.
8
Quality of Big Data in health care.医疗保健领域大数据的质量。
Int J Health Care Qual Assur. 2015;28(6):621-34. doi: 10.1108/IJHCQA-07-2014-0080.

本文引用的文献

3
A Big-Data-based platform of workers' behavior: Observations from the field.基于大数据的工人行为平台:实地观察。
Accid Anal Prev. 2016 Aug;93:299-309. doi: 10.1016/j.aap.2015.09.024. Epub 2015 Nov 21.
7
Competing on analytics.基于分析进行竞争。
Harv Bus Rev. 2006 Jan;84(1):98-107, 134.
8
High-performance work systems and occupational safety.高绩效工作系统与职业安全。
J Appl Psychol. 2005 Jan;90(1):77-93. doi: 10.1037/0021-9010.90.1.77.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验