Suppr超能文献

通过人工神经网络进行胰腺癌预测

Pancreatic Cancer Prediction Through an Artificial Neural Network.

作者信息

Muhammad Wazir, Hart Gregory R, Nartowt Bradley, Farrell James J, Johung Kimberly, Liang Ying, Deng Jun

机构信息

Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, CT, United States.

Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States.

出版信息

Front Artif Intell. 2019 May 3;2:2. doi: 10.3389/frai.2019.00002. eCollection 2019.

Abstract

Early detection of pancreatic cancer is challenging because cancer-specific symptoms occur only at an advanced stage, and a reliable screening tool to identify high-risk patients is lacking. To address this challenge, an artificial neural network (ANN) was developed, trained, and tested using the health data of 800,114 respondents captured in the National Health Interview Survey (NHIS) and Pancreatic, Lung, Colorectal, and Ovarian cancer (PLCO) datasets, together containing 898 patients diagnosed with pancreatic cancer. Prediction of pancreatic cancer risk was assessed at an individual level by incorporating 18 features into the neural network. The established ANN model achieved a sensitivity of 87.3 and 80.7%, a specificity of 80.8 and 80.7%, and an area under the receiver operating characteristic curve of 0.86 and 0.85 for the training and testing cohorts, respectively. These results indicate that our ANN can be used to predict pancreatic cancer risk with high discriminatory power and may provide a novel approach to identify patients at higher risk for pancreatic cancer who may benefit from more tailored screening and intervention.

摘要

胰腺癌的早期检测具有挑战性,因为癌症特异性症状仅在晚期出现,而且缺乏用于识别高危患者的可靠筛查工具。为应对这一挑战,研究人员利用美国国家健康访谈调查(NHIS)和胰腺癌、肺癌、结直肠癌和卵巢癌(PLCO)数据集中收集的800,114名受访者的健康数据,开发、训练并测试了一个人工神经网络(ANN),这些数据集中共有898名被诊断为胰腺癌的患者。通过将18个特征纳入神经网络,在个体层面评估胰腺癌风险预测。所建立的ANN模型在训练队列和测试队列中的灵敏度分别为87.3%和80.7%,特异性分别为80.8%和80.7%,受试者工作特征曲线下面积分别为0.86和0.85。这些结果表明,我们的人工神经网络可用于以高鉴别力预测胰腺癌风险,并可能为识别胰腺癌高危患者提供一种新方法,这些患者可能受益于更具针对性的筛查和干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dcf/7861334/c7564a7de758/frai-02-00002-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验