Suppr超能文献

用于前列腺癌风险预测和分层的多参数人工神经网络的开发与验证

Development and Validation of a Multiparameterized Artificial Neural Network for Prostate Cancer Risk Prediction and Stratification.

作者信息

Roffman David A, Hart Gregory R, Leapman Michael S, Yu James B, Guo Fangliang L, Ali Issa, Deng Jun

机构信息

All authors: Yale University, New Haven, CT.

出版信息

JCO Clin Cancer Inform. 2018 Dec;2:1-10. doi: 10.1200/CCI.17.00119.

Abstract

PURPOSE

To develop and validate a multiparameterized artificial neural network (ANN) on the basis of personal health information for prostate cancer risk prediction and stratification.

METHODS

The 1997 to 2015 National Health Interview Survey adult survey data were used to train and validate a multiparameterized ANN, with parameters including age, body mass index, diabetes status, smoking status, emphysema, asthma, race, ethnicity, hypertension, heart disease, exercise habits, and history of stroke. We developed a training set of patients ≥ 45 years of age with a first primary prostate cancer diagnosed within 4 years of the survey. After training, the sensitivity and specificity were obtained as functions of the cutoff values of the continuous output of the ANN. We also evaluated the ANN with the 2016 data set for cancer risk stratification.

RESULTS

We identified 1,672 patients with prostate cancer and 100,033 respondents without cancer in the 1997 to 2015 data sets. The training set had a sensitivity of 21.5% (95% CI, 19.2% to 23.9%), specificity of 91% (95% CI, 90.8% to 91.2%), area under the curve of 0.73 (95% CI, 0.71 to 0.75), and positive predictive value of 28.5% (95% CI, 25.5% to 31.5%). The validation set had a sensitivity of 23.2% (95% CI, 19.5% to 26.9%), specificity of 89.4% (95% CI, 89% to 89.7%), area under the curve of 0.72 (95% CI, 0.70 to 0.75), and positive predictive value of 26.5% (95% CI, 22.4% to 30.6%). For the 2016 data set, the ANN classified all 13,031 patients into low-, medium-, and high-risk subgroups and identified 5% of the cancer population as high risk.

CONCLUSION

A multiparameterized ANN that is based on personal health information could be used for prostate cancer risk prediction with high specificity and low sensitivity. The ANN can further stratify the population into three subgroups that may be helpful in refining prescreening estimates of cancer risk.

摘要

目的

基于个人健康信息开发并验证一种多参数人工神经网络(ANN),用于前列腺癌风险预测和分层。

方法

使用1997年至2015年国家健康访谈调查的成人调查数据来训练和验证一个多参数ANN,其参数包括年龄、体重指数、糖尿病状态、吸烟状态、肺气肿、哮喘、种族、族裔、高血压、心脏病、运动习惯和中风史。我们构建了一个训练集,其中包含年龄≥45岁且在调查后4年内首次被诊断为原发性前列腺癌的患者。训练后,根据ANN连续输出的截断值函数得出敏感性和特异性。我们还使用2016年数据集对ANN进行癌症风险分层评估。

结果

在1997年至2015年的数据集中,我们识别出1672例前列腺癌患者和100033例无癌症的受访者。训练集的敏感性为21.5%(95%CI,19.2%至23.9%),特异性为91%(95%CI,90.8%至91.2%),曲线下面积为0.73(95%CI,0.71至0.75),阳性预测值为28.5%(95%CI,25.5%至31.5%)。验证集的敏感性为23.2%(95%CI,19.5%至26.9%),特异性为89.4%(95%CI,89%至89.7%),曲线下面积为0.72(95%CI,0.70至0.75),阳性预测值为26.5%(95%CI,22.4%至30.6%)。对于2016年数据集,ANN将所有13031例患者分为低、中、高风险亚组,并将5%的癌症人群识别为高风险。

结论

基于个人健康信息的多参数ANN可用于前列腺癌风险预测,具有高特异性和低敏感性。该ANN可进一步将人群分为三个亚组,这可能有助于完善癌症风险的预筛查估计。

相似文献

2

引用本文的文献

7
Pancreatic Cancer Prediction Through an Artificial Neural Network.通过人工神经网络进行胰腺癌预测
Front Artif Intell. 2019 May 3;2:2. doi: 10.3389/frai.2019.00002. eCollection 2019.
8
Stratifying Ovarian Cancer Risk Using Personal Health Data.利用个人健康数据分层评估卵巢癌风险
Front Big Data. 2019 Jul 2;2:24. doi: 10.3389/fdata.2019.00024. eCollection 2019.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验