Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, USA.
Department of Dermatology, School of Medicine, Yale University, New Haven, USA.
Sci Rep. 2018 Jan 26;8(1):1701. doi: 10.1038/s41598-018-19907-9.
Ultraviolet radiation (UVR) exposure and family history are major associated risk factors for the development of non-melanoma skin cancer (NMSC). The objective of this study was to develop and validate a multi-parameterized artificial neural network based on available personal health information for early detection of NMSC with high sensitivity and specificity, even in the absence of known UVR exposure and family history. The 1997-2015 NHIS adult survey data used to train and validate our neural network (NN) comprised of 2,056 NMSC and 460,574 non-cancer cases. We extracted 13 parameters for our NN: gender, age, BMI, diabetic status, smoking status, emphysema, asthma, race, Hispanic ethnicity, hypertension, heart diseases, vigorous exercise habits, and history of stroke. This study yielded an area under the ROC curve of 0.81 and 0.81 for training and validation, respectively. Our results (training sensitivity 88.5% and specificity 62.2%, validation sensitivity 86.2% and specificity 62.7%) were comparable to a previous study of basal and squamous cell carcinoma prediction that also included UVR exposure and family history information. These results indicate that our NN is robust enough to make predictions, suggesting that we have identified novel associations and potential predictive parameters of NMSC.
紫外线辐射 (UVR) 暴露和家族史是发生非黑素瘤皮肤癌 (NMSC) 的主要相关危险因素。本研究的目的是开发和验证一种基于现有个人健康信息的多参数人工神经网络,以实现 NMSC 的高灵敏度和特异性早期检测,即使在没有已知 UVR 暴露和家族史的情况下也是如此。用于训练和验证我们的神经网络 (NN) 的 1997-2015 年 NHIS 成人调查数据包括 2056 例 NMSC 和 460574 例非癌症病例。我们从 NN 中提取了 13 个参数:性别、年龄、BMI、糖尿病状态、吸烟状况、肺气肿、哮喘、种族、西班牙裔、高血压、心脏病、剧烈运动习惯和中风史。这项研究的 ROC 曲线下面积分别为 0.81 和 0.81。我们的结果(训练灵敏度 88.5%和特异性 62.2%,验证灵敏度 86.2%和特异性 62.7%)与之前一项包括 UVR 暴露和家族史信息的基底细胞和鳞状细胞癌预测研究相当。这些结果表明,我们的 NN 足够强大,可以进行预测,这表明我们已经确定了 NMSC 的新关联和潜在预测参数。