Suppr超能文献

作为有限理性形式的追溯性推理及其对学习的有益影响。

Retrospective Inference as a Form of Bounded Rationality, and Its Beneficial Influence on Learning.

作者信息

FitzGerald Thomas H B, Penny Will D, Bonnici Heidi M, Adams Rick A

机构信息

School of Psychology, University of East Anglia, Norwich, United Kingdom.

The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom.

出版信息

Front Artif Intell. 2020 Feb 18;3:2. doi: 10.3389/frai.2020.00002. eCollection 2020.

Abstract

Probabilistic models of cognition typically assume that agents make inferences about current states by combining new sensory information with fixed beliefs about the past, an approach known as Bayesian filtering. This is computationally parsimonious, but, in general, leads to suboptimal beliefs about past states, since it ignores the fact that new observations typically contain information about the past as well as the present. This is disadvantageous both because knowledge of past states may be intrinsically valuable, and because it impairs learning about fixed or slowly changing parameters of the environment. For these reasons, in offline data analysis it is usual to infer on every set of states using the entire time series of observations, an approach known as (fixed-interval) Bayesian smoothing. Unfortunately, however, this is impractical for real agents, since it requires the maintenance and updating of beliefs about an ever-growing set of states. We propose an intermediate approach, finite retrospective inference (FRI), in which agents perform update beliefs about a limited number of past states (Formally, this represents online fixed-lag smoothing with a sliding window). This can be seen as a form of bounded rationality in which agents seek to optimize the accuracy of their beliefs subject to computational and other resource costs. We show through simulation that this approach has the capacity to significantly increase the accuracy of both inference and learning, using a simple variational scheme applied to both randomly generated Hidden Markov models (HMMs), and a specific application of the HMM, in the form of the widely used probabilistic reversal task. Our proposal thus constitutes a theoretical contribution to normative accounts of bounded rationality, which makes testable empirical predictions that can be explored in future work.

摘要

认知的概率模型通常假设,主体通过将新的感官信息与关于过去的固定信念相结合来推断当前状态,这种方法被称为贝叶斯滤波。这在计算上较为简洁,但一般会导致对过去状态的信念次优,因为它忽略了新观察通常既包含关于过去的信息也包含关于当前的信息这一事实。这是不利的,既因为对过去状态的了解可能本身就有价值,也因为它会损害对环境固定或缓慢变化参数的学习。出于这些原因,在离线数据分析中,通常会使用整个观测时间序列对每一组状态进行推断,这种方法被称为(固定间隔)贝叶斯平滑。然而,不幸的是,这对实际主体来说是不切实际的,因为它需要维护和更新关于不断增长的状态集的信念。我们提出一种中间方法,有限回溯推断(FRI),其中主体对有限数量的过去状态进行信念更新(形式上,这表示使用滑动窗口的在线固定滞后平滑)。这可以被视为一种有限理性形式,其中主体在计算和其他资源成本的约束下寻求优化其信念的准确性。我们通过模拟表明,使用应用于随机生成的隐马尔可夫模型(HMM)以及以广泛使用的概率反转任务形式的HMM的特定应用的简单变分方案,这种方法有能力显著提高推断和学习的准确性。因此,我们的提议构成了对有限理性规范解释的理论贡献,它做出了可检验的实证预测,可在未来工作中进行探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/378b/7861256/6156d9b218db/frai-03-00002-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验