Suppr超能文献

不可预测环境中的规范性证据积累。

Normative evidence accumulation in unpredictable environments.

作者信息

Glaze Christopher M, Kable Joseph W, Gold Joshua I

机构信息

Department of Neuroscience, University of Pennsylvania, Philadelphia, United States.

Department of Psychology, University of Pennsylvania, Philadelphia, United States.

出版信息

Elife. 2015 Aug 31;4:e08825. doi: 10.7554/eLife.08825.

Abstract

In our dynamic world, decisions about noisy stimuli can require temporal accumulation of evidence to identify steady signals, differentiation to detect unpredictable changes in those signals, or both. Normative models can account for learning in these environments but have not yet been applied to faster decision processes. We present a novel, normative formulation of adaptive learning models that forms decisions by acting as a leaky accumulator with non-absorbing bounds. These dynamics, derived for both discrete and continuous cases, depend on the expected rate of change of the statistics of the evidence and balance signal identification and change detection. We found that, for two different tasks, human subjects learned these expectations, albeit imperfectly, then used them to make decisions in accordance with the normative model. The results represent a unified, empirically supported account of decision-making in unpredictable environments that provides new insights into the expectation-driven dynamics of the underlying neural signals.

摘要

在我们这个动态的世界中,关于嘈杂刺激的决策可能需要对证据进行时间上的积累以识别稳定信号,进行区分以检测这些信号中不可预测的变化,或者两者兼而有之。规范模型可以解释在这些环境中的学习情况,但尚未应用于更快的决策过程。我们提出了一种新颖的、规范的自适应学习模型公式,该模型通过充当具有非吸收边界的泄漏累加器来形成决策。这些动态过程,无论是离散情况还是连续情况,都取决于证据统计量的预期变化率,并平衡信号识别和变化检测。我们发现,对于两项不同的任务,人类受试者学习了这些预期,尽管并不完美,然后根据规范模型利用这些预期来做出决策。这些结果代表了对不可预测环境中决策的一种统一的、有实证支持的解释,为潜在神经信号的预期驱动动态提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验