Suppr超能文献

通过平衡目标标签来调整公平性。

Tuning Fairness by Balancing Target Labels.

作者信息

Kehrenberg Thomas, Chen Zexun, Quadrianto Novi

机构信息

Predictive Analytics Lab (PAL), Informatics, University of Sussex, Brighton, United Kingdom.

National Research University Higher School of Economics, Moscow, Russia.

出版信息

Front Artif Intell. 2020 May 12;3:33. doi: 10.3389/frai.2020.00033. eCollection 2020.

Abstract

The issue of fairness in machine learning models has recently attracted a lot of attention as ensuring it will ensure continued confidence of the general public in the deployment of machine learning systems. We focus on mitigating the harm incurred by a biased machine learning system that offers better outputs (e.g., loans, job interviews) for certain groups than for others. We show that bias in the output can naturally be controlled in probabilistic models by introducing a latent target output. This formulation has several advantages: first, it is a unified framework for several notions of group fairness such as Demographic Parity and Equality of Opportunity; second, it is expressed as a marginalization instead of a constrained problem; and third, it allows the encoding of our knowledge of what unbiased outputs should be. Practically, the second allows us to avoid unstable constrained optimization procedures and to reuse off-the-shelf toolboxes. The latter translates to the ability to control the level of fairness by directly varying fairness target rates. In contrast, existing approaches rely on intermediate, arguably unintuitive, control parameters such as covariance thresholds.

摘要

机器学习模型中的公平性问题近来备受关注,因为确保公平性将使公众对机器学习系统的部署持续保持信心。我们专注于减轻有偏差的机器学习系统所造成的危害,该系统为某些群体提供比其他群体更好的输出结果(例如贷款、工作面试)。我们表明,通过引入潜在目标输出,概率模型中的输出偏差能够自然得到控制。这种公式化表述有几个优点:其一,它是诸如人口统计学均等和机会均等之类的多个群体公平性概念的统一框架;其二,它被表示为边缘化而非约束问题;其三,它允许对我们关于无偏差输出应该是什么的知识进行编码。实际上,第二点使我们能够避免不稳定的约束优化过程,并复用现成的工具箱。后者转化为通过直接改变公平性目标率来控制公平性水平的能力。相比之下,现有方法依赖于中间的、可以说是不直观的控制参数,例如协方差阈值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deb8/7861271/8d901f5ac366/frai-03-00033-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验