Suppr超能文献

使用机器学习模型预测急性术后疼痛的公平性。

Fairness in the prediction of acute postoperative pain using machine learning models.

作者信息

Davoudi Anis, Sajdeya Ruba, Ison Ron, Hagen Jennifer, Rashidi Parisa, Price Catherine C, Tighe Patrick J

机构信息

Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United Sates.

Department of Epidemiology, University of Florida College of Public Health and Health Professions, Gainesville, FL, United States.

出版信息

Front Digit Health. 2023 Jan 11;4:970281. doi: 10.3389/fdgth.2022.970281. eCollection 2022.

Abstract

INTRODUCTION

Overall performance of machine learning-based prediction models is promising; however, their generalizability and fairness must be vigorously investigated to ensure they perform sufficiently well for all patients.

OBJECTIVE

This study aimed to evaluate prediction bias in machine learning models used for predicting acute postoperative pain.

METHOD

We conducted a retrospective review of electronic health records for patients undergoing orthopedic surgery from June 1, 2011, to June 30, 2019, at the University of Florida Health system/Shands Hospital. CatBoost machine learning models were trained for predicting the binary outcome of low (≤4) and high pain (>4). Model biases were assessed against seven protected attributes of age, sex, race, area deprivation index (ADI), speaking language, health literacy, and insurance type. Reweighing of protected attributes was investigated for reducing model bias compared with base models. Fairness metrics of equal opportunity, predictive parity, predictive equality, statistical parity, and overall accuracy equality were examined.

RESULTS

The final dataset included 14,263 patients [age: 60.72 (16.03) years, 53.87% female, 39.13% low acute postoperative pain]. The machine learning model (area under the curve, 0.71) was biased in terms of age, race, ADI, and insurance type, but not in terms of sex, language, and health literacy. Despite promising overall performance in predicting acute postoperative pain, machine learning-based prediction models may be biased with respect to protected attributes.

CONCLUSION

These findings show the need to evaluate fairness in machine learning models involved in perioperative pain before they are implemented as clinical decision support tools.

摘要

引言

基于机器学习的预测模型的整体性能很有前景;然而,必须大力研究它们的可推广性和公平性,以确保它们对所有患者都能表现得足够好。

目的

本研究旨在评估用于预测急性术后疼痛的机器学习模型中的预测偏差。

方法

我们对2011年6月1日至2019年6月30日在佛罗里达大学健康系统/尚德医院接受骨科手术的患者的电子健康记录进行了回顾性研究。使用CatBoost机器学习模型来预测低疼痛(≤4)和高疼痛(>4)的二元结果。针对年龄、性别、种族、地区贫困指数(ADI)、语言、健康素养和保险类型这七个受保护属性评估模型偏差。研究了对受保护属性进行重新加权以减少与基础模型相比的模型偏差。检查了平等机会、预测均等、预测平等、统计均等和总体准确性均等的公平性指标。

结果

最终数据集包括14263名患者[年龄:60.72(16.03)岁,53.87%为女性,39.13%有低急性术后疼痛]。机器学习模型(曲线下面积,0.71)在年龄、种族、ADI和保险类型方面存在偏差,但在性别、语言和健康素养方面没有偏差。尽管在预测急性术后疼痛方面总体性能很有前景,但基于机器学习的预测模型在受保护属性方面可能存在偏差。

结论

这些发现表明,在将涉及围手术期疼痛的机器学习模型作为临床决策支持工具实施之前,有必要评估其公平性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8883/9874861/642445a311d3/fdgth-04-970281-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验