Schmid Hans-Jörg, Würschinger Quirin, Fischer Sebastian, Küchenhoff Helmut
Department of English and American Studies, LMU, Munich, Germany.
Statistical Consulting Unit StaBLab, Department of Statistics, LMU, Munich, Germany.
Front Artif Intell. 2021 Jan 26;3:547531. doi: 10.3389/frai.2020.547531. eCollection 2020.
The present study deals with variation in the use of lexico-grammatical patterns and emphasizes the need to embrace individual variation. Targeting the pattern that's adj (as in , or ) as a case study, we use a tailor-made Python script to systematically retrieve grammatical and semantic information about all instances of this construction in BNC2014 as well as sociolinguistic information enabling us to study social and individual lexico-grammatical variation among speakers who have used this pattern. The dataset amounts to 4,394 tokens produced by 445 speakers using 159 adjective types in 931 conversations. Using detailed descriptive statistics and mixed-effects regression models, we show that while the choice of some adjectives is partly determined by social variables, situational and especially individual variation is rampant overall. Adopting a cognitive-linguistic perspective and relying on the notion of entrenchment, we interpret these findings as reflecting individual speakers' routines. We argue that computational sociolinguistics is in an ideal position to contribute to the data-driven investigation of individual lexico-grammatical variation and encourage computational sociolinguists to grab this opportunity. For the routines of individual speakers ultimately both underlie and compromise systematic social variation and trigger and steer well-known types of language change including grammaticalization, pragmaticalization and change by invited inference.
本研究探讨词汇语法模式使用中的变异,并强调接纳个体变异的必要性。以“adj(如 或 )”这种模式为案例研究对象,我们使用一个特制的Python脚本,系统地检索BNC2014中该结构所有实例的语法和语义信息,以及社会语言学信息,使我们能够研究使用该模式的说话者之间的社会和个体词汇语法变异。该数据集包含445名说话者在931次对话中使用159种形容词类型产生的4394个词元。通过使用详细的描述性统计和混合效应回归模型,我们表明,虽然某些形容词的选择部分由社会变量决定,但情境变异尤其是个体变异总体上非常普遍。从认知语言学的角度出发,依靠固化的概念,我们将这些发现解释为反映了个体说话者的惯常做法。我们认为,计算社会语言学非常适合为个体词汇语法变异的数据驱动研究做出贡献,并鼓励计算社会语言学家抓住这个机会。因为个体说话者的惯常做法最终既构成系统的社会变异的基础,又对其产生影响,还引发并引导包括语法化、语用化和通过邀请推理产生的变化等著名的语言变化类型。