Department of Radiology, Stanford University, Stanford, CA, USA.
Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.
Med Phys. 2021 Jun;48(6):2939-2950. doi: 10.1002/mp.14848. Epub 2021 Apr 12.
Synthetic magnetic resonance imaging (MRI) requires the acquisition of multicontrast images to estimate quantitative parameter maps, such as T , T , and proton density (PD). The study aims to develop a multicontrast reconstruction method based on joint parallel imaging (JPI) and joint deep learning (JDL) to enable further acceleration of synthetic MRI.
The JPI and JDL methods are extended and combined to improve reconstruction for better-quality, synthesized images. JPI is performed as a first step to estimate the missing k-space lines, and JDL is then performed to correct and refine the previous estimate with a trained neural network. For the JDL architecture, the original variable splitting network (VS-Net) is modified and extended to form a joint variable splitting network (JVS-Net) to apply to multicontrast reconstructions. The proposed method is designed and tested for multidynamic multiecho (MDME) images with Cartesian uniform under-sampling using acceleration factors between 4 and 8.
It is demonstrated that the normalized root-mean-square error (nRMSE) is lower and the structural similarity index measure (SSIM) values are higher with the proposed method compared to both the JPI and JDL methods individually. The method also demonstrates the potential to produce a set of synthesized contrast-weighted images that closely resemble those from the fully sampled acquisition without erroneous artifacts.
Combining JPI and JDL enables the reconstruction of highly accelerated synthetic MRIs.
合成磁共振成像(MRI)需要采集多对比度图像来估计定量参数图,如 T1、T2 和质子密度(PD)。本研究旨在开发一种基于联合并行成像(JPI)和联合深度学习(JDL)的多对比度重建方法,以实现合成 MRI 的进一步加速。
扩展和组合 JPI 和 JDL 方法以改进重建,以获得更好质量的合成图像。首先进行 JPI 以估计缺失的 k 空间线,然后使用训练有素的神经网络进行 JDL 以纠正和细化先前的估计。对于 JDL 架构,修改和扩展原始变量分裂网络(VS-Net)以形成联合变量分裂网络(JVS-Net),以应用于多对比度重建。该方法针对笛卡尔均匀欠采样的多维动态多回波(MDME)图像进行设计和测试,加速因子在 4 到 8 之间。
与单独的 JPI 和 JDL 方法相比,所提出的方法具有较低的归一化均方根误差(nRMSE)和较高的结构相似性指数度量(SSIM)值。该方法还具有生成一组与完全采样采集非常相似的合成对比加权图像的潜力,而没有错误的伪影。
联合 JPI 和 JDL 能够重建高度加速的合成 MRI。