Lee Jae-Hun, Yi Jaeuk, Kim Jun-Hyeong, Ryu Kanghyun, Han Dongyeob, Kim Sewook, Lee Seul, Kim Deog Young, Kim Dong-Hyun
Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.
Department of Radiology, Stanford University, Stanford, California, USA.
Med Phys. 2022 Sep;49(9):5929-5942. doi: 10.1002/mp.15788. Epub 2022 Jun 22.
To enable acceleration in 3D multi-echo gradient echo (mGRE) acquisition for myelin water imaging (MWI) by combining joint parallel imaging (JPI) and joint deep learning (JDL).
We implemented a multistep reconstruction process using both advanced parallel imaging and deep learning network which can utilize joint spatiotemporal components between the multi-echo images to further accelerate 3D mGRE acquisition for MWI. In the first step, JPI was performed to estimate missing k-space lines. Next, JDL was implemented to reduce residual artifacts and produce high-fidelity reconstruction by using variable splitting optimization consisting of spatiotemporal denoiser block, data consistency block, and weighted average block. The proposed method was evaluated for MWI with 2D Cartesian uniform under-sampling for each echo, enabling scan times of up to approximately 2 min for 3D coverage.
The proposed method showed acceptable MWI quality with improved quantitative values compared to both JPI and JDL methods individually. The improved performance of the proposed method was demonstrated by the low normalized mean-square error and high-frequency error norm values of the reconstruction with high similarity to the fully sampled MWI.
Joint spatiotemporal reconstruction approach by combining JPI and JDL can achieve high acceleration factors for 3D mGRE-based MWI.
通过结合联合并行成像(JPI)和联合深度学习(JDL),实现用于髓鞘水成像(MWI)的三维多回波梯度回波(mGRE)采集的加速。
我们实施了一个多步骤重建过程,使用先进的并行成像和深度学习网络,该网络可以利用多回波图像之间的联合时空成分,以进一步加速用于MWI的三维mGRE采集。第一步,进行JPI以估计缺失的k空间线。接下来,实施JDL以减少残余伪影,并通过使用由时空去噪器块、数据一致性块和加权平均块组成的变量分裂优化来产生高保真重建。所提出的方法针对每个回波具有二维笛卡尔均匀欠采样的MWI进行了评估,对于三维覆盖,扫描时间可达约2分钟。
与单独的JPI和JDL方法相比,所提出的方法显示出可接受的MWI质量,且定量值有所改善。所提出方法的改进性能通过重建的低归一化均方误差和高频误差范数值得到证明,其与完全采样的MWI具有高度相似性。
结合JPI和JDL的联合时空重建方法可以为基于三维mGRE的MWI实现高加速因子。