Liu Dong, Ai Haoqiang, Chen Mingpeng, Zhou Pengfei, Li Bowen, Liu Di, Du Xinyu, Lo Kin Ho, Ng Kar-Wei, Wang Shuang-Peng, Chen Shi, Xing Guichuan, Hu Jinsong, Pan Hui
Institute of Applied Physics and Materials Engineering, University of Macau, Macao, Macao SAR, 999078, China.
Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao, Macao SAR, 999078, China.
Small. 2021 Apr;17(17):e2007557. doi: 10.1002/smll.202007557. Epub 2021 Mar 18.
Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble-metal-free electrocatalysts for HER is promising for the application of hydrogen technology. Herein, it is reported that 3D porous hierarchical CoNiP/Co P multi-phase heterostructure on Ni foam via an electrodeposition method followed by phosphorization exhibits ultra-highly catalytic activity for HER. The optimized CoNiP/Co P multi-phase heterostructure achieves an excellent HER performance with an ultralow overpotential of 36 mV at 10 mA cm , superior to commercial Pt/C. Importantly, the multi-phase heterostructure shows exceptional stability as confirmed by the long-term potential cycles (30,000 cycles) and extended electrocatalysis (up to 500 h) in alkaline solution and natural seawater. Experimental characterizations and DFT calculations demonstrate that the strong electronic interaction at the heterointerface of CoNiP/CoP is achieved via the electron transfer from CoNiP to the heterointerface, which directly promotes the dissociation of water at heterointerface and desorption of hydrogen on CoNiP. These findings may provide deep understanding on the HER mechanism of heterostructure electrocatalysts and guidance on the design of earth-abundant, cost-effective electrocatalysts with superior HER activity for practical applications.
析氢反应(HER)是电化学能量转换和存储的关键步骤。开发结构明确的纳米结构作为用于析氢反应的无贵金属电催化剂,对于氢能技术的应用具有广阔前景。在此,据报道,通过电沉积法然后进行磷化处理在泡沫镍上制备的三维多孔分级CoNiP/CoP多相异质结构对析氢反应表现出超高的催化活性。优化后的CoNiP/CoP多相异质结构在10 mA cm时具有36 mV的超低过电位,实现了优异的析氢反应性能,优于商业Pt/C。重要的是,通过在碱性溶液和天然海水中进行长期电位循环(30,000次循环)和延长电催化(长达500小时)证实,该多相异质结构具有出色的稳定性。实验表征和密度泛函理论计算表明,CoNiP/CoP异质界面处的强电子相互作用是通过电子从CoNiP转移到异质界面实现的,这直接促进了异质界面处水的解离以及CoNiP上氢的脱附。这些发现可能为深入理解异质结构电催化剂的析氢反应机理以及设计具有优异析氢反应活性、储量丰富且成本效益高的实用型电催化剂提供指导。