College of Chemistry, Research Center of Green Catalysis, Henan Institute of Advance Technology, Zhengzhou University, Zhengzhou 450001, China.
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
Int J Mol Sci. 2022 May 10;23(10):5290. doi: 10.3390/ijms23105290.
The careful design of nanostructures and multi-compositions of non-noble metal-based electrocatalysts for highly efficient electrocatalytic hydrogen and oxygen evolution reaction (HER and OER) is of great significance to realize sustainable hydrogen release. Herein, bifunctional electrocatalysts of the three-dimensional (3D) cobalt-nickel phosphide nanoarray in situ grown on nickel foams (CoNiP NA/NF) were synthesized through a facile hydrothermal method followed by phosphorization. Due to the unique self-template nanoarray structure and tunable multicomponent system, the CoNiP NA/NF samples present exceptional activity and durability for HER and OER. The optimized sample of CoNiP NA/NF-2 afforded a current density of 10 mA cm at a low overpotential of 162 mV for HER and 499 mV for OER, corresponding with low Tafel slopes of 114.3 and 79.5 mV dec, respectively. Density functional theory (DFT) calculations demonstrate that modulation active sites with appropriate electronic properties facilitate the interaction between the catalyst surface and intermediates, especially for the adsorption of absorbed H* and *OOH intermediates, resulting in an optimized energy barrier for HER and OER. The 3D nanoarray structure, with a large specific surface area and abundant ion channels, can enrich the electroactive sites and enhance mass transmission. This work provides novel strategies and insights for the design of robust non-precious metal catalysts.
精心设计的纳米结构和非贵金属基电催化剂的多组分对于高效电催化析氢和析氧反应(HER 和 OER)具有重要意义,有助于实现可持续的氢气释放。本文通过简便的水热法和随后的磷化反应,合成了原位生长在泡沫镍上的三维(3D)钴镍磷纳米阵列的双功能电催化剂(CoNiP NA/NF)。由于独特的自模板纳米阵列结构和可调的多组分体系,CoNiP NA/NF 样品在 HER 和 OER 中表现出出色的活性和耐久性。优化后的 CoNiP NA/NF-2 样品在 HER 中提供了 10 mA cm 的电流密度,过电位为 162 mV,OER 的过电位为 499 mV,相应的 Tafel 斜率分别为 114.3 和 79.5 mV dec。密度泛函理论(DFT)计算表明,调节具有适当电子性质的活性位点有利于催化剂表面与中间体之间的相互作用,特别是对吸附的 H和OOH 中间体的吸附,从而优化了 HER 和 OER 的能量势垒。3D 纳米阵列结构具有较大的比表面积和丰富的离子通道,可以丰富电活性位点并增强质量传递。这项工作为设计稳健的非贵金属催化剂提供了新的策略和思路。