Suppr超能文献

用于直接海水电解的耐腐蚀单原子催化剂。

Corrosion-resistant single-atom catalysts for direct seawater electrolysis.

作者信息

Zhang Yue, Wan Weikang, Peng Yudi, Guo Yujun, Zhou Jialing, Wang Shengchen, Yuan Jiayao, Liao Yuru, Liu Linsheng, Zhang Yifan, Liu Suli, Wang Dingsheng, Dai Zhihui

机构信息

School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

Department of Chemistry, Tsinghua University, Beijing 100084, China.

出版信息

Natl Sci Rev. 2025 Feb 22;12(4):nwaf060. doi: 10.1093/nsr/nwaf060. eCollection 2025 Apr.

Abstract

Direct seawater electrolysis (DSE) for hydrogen production is an appealing method for renewable energy storage. However, DSE faces challenges such as slow reaction kinetics, impurities, the competing chlorine evolution reaction at the anode, and membrane fouling, making it more complex than freshwater electrolysis. Therefore, developing catalysts with excellent stability under corrosion and fulfilling activity is vital to the advancement of DSE. Single-atom catalysts (SACs) with excellent tunability, high selectivity and high active sites demonstrate considerable potential for use in the electrolysis of seawater. In this review, we present the anodic and cathodic reaction mechanisms that occur during seawater cracking. Subsequently, to meet the challenges of DSE, rational strategies for modulating SACs are explored, including axial ligand engineering, carrier effects and protective layer coverage. Then, the application of characterization techniques and theoretical calculations to SACs is discussed with the aim of elucidating the intrinsic factors responsible for their efficient electrocatalysis. Finally, the process of scaling up monoatomic catalysts for the electrolysis of seawater is described, and some prospective insights are provided.

摘要

直接海水电解(DSE)制氢是一种颇具吸引力的可再生能源存储方法。然而,DSE面临着诸如反应动力学缓慢、存在杂质、阳极发生竞争性析氯反应以及膜污染等挑战,这使得它比淡水电解更为复杂。因此,开发在腐蚀环境下具有优异稳定性且具备活性的催化剂对于DSE的发展至关重要。具有出色可调性、高选择性和高活性位点的单原子催化剂(SACs)在海水电解中展现出了巨大的应用潜力。在这篇综述中,我们阐述了海水裂解过程中发生的阳极和阴极反应机理。随后,为应对DSE的挑战,我们探索了调控SACs的合理策略,包括轴向配体工程、载体效应和保护层覆盖。接着,讨论了表征技术和理论计算在SACs中的应用,旨在阐明其高效电催化作用的内在因素。最后,描述了海水电解用单原子催化剂的放大过程,并提供了一些前瞻性见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b67a/11960101/709fc866b860/nwaf060fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验