Suppr超能文献

比较健康技术和政策评估的决策建模方法。

Comparison of Decision Modeling Approaches for Health Technology and Policy Evaluation.

机构信息

Department of Health Policy, Vanderbilt University School of Medicine Vanderbilt University Medical Center, Nashville, TN, USA.

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Med Decis Making. 2021 May;41(4):453-464. doi: 10.1177/0272989X21995805. Epub 2021 Mar 18.

Abstract

We discuss tradeoffs and errors associated with approaches to modeling health economic decisions. Through an application in pharmacogenomic (PGx) testing to guide drug selection for individuals with a genetic variant, we assessed model accuracy, optimal decisions, and computation time for an identical decision scenario modeled 4 ways: using 1) coupled-time differential equations (DEQ), 2) a cohort-based discrete-time state transition model (MARKOV), 3) an individual discrete-time state transition microsimulation model (MICROSIM), and 4) discrete event simulation (DES). Relative to DEQ, the net monetary benefit for PGx testing (v. a reference strategy of no testing) based on MARKOV with rate-to-probability conversions using commonly used formulas resulted in different optimal decisions. MARKOV was nearly identical to DEQ when transition probabilities were embedded using a transition intensity matrix. Among stochastic models, DES model outputs converged to DEQ with substantially fewer simulated patients (1 million) v. MICROSIM (1 billion). Overall, properly embedded Markov models provided the most favorable mix of accuracy and runtime but introduced additional complexity for calculating cost and quality-adjusted life year outcomes due to the inclusion of "jumpover" states after proper embedding of transition probabilities. Among stochastic models, DES offered the most favorable mix of accuracy, reliability, and speed.

摘要

我们讨论了与建模健康经济决策相关的权衡和误差。通过在药物基因组学(PGx)测试中的应用来指导具有遗传变异的个体的药物选择,我们评估了 4 种方式建模的相同决策场景的模型准确性、最优决策和计算时间:使用 1)耦合时间微分方程(DEQ)、2)基于队列的离散时间状态转移模型(MARKOV)、3)个体离散时间状态转移微观模拟模型(MICROSIM)和 4)离散事件模拟(DES)。与 DEQ 相比,基于 MARKOV 的 PGx 测试(与不进行测试的参考策略相比)的净货币收益,使用常用公式进行速率到概率的转换,导致了不同的最优决策。当使用转移强度矩阵嵌入转移概率时,MARKOV 与 DEQ 几乎相同。在随机模型中,DES 模型输出与 DEQ 收敛,模拟患者数量(100 万)远少于 MICROSIM(10 亿)。总体而言,正确嵌入的 Markov 模型提供了最有利的准确性和运行时组合,但由于正确嵌入转移概率后包含了“跳跃”状态,因此在计算成本和质量调整生命年结果时引入了额外的复杂性。在随机模型中,DES 提供了最有利的准确性、可靠性和速度组合。

相似文献

引用本文的文献

1
Modeling Disability-Adjusted Life-Years for Policy and Decision Analysis.用于政策和决策分析的伤残调整生命年建模。
Med Decis Making. 2025 Jul;45(5):483-495. doi: 10.1177/0272989X251340077. Epub 2025 May 28.

本文引用的文献

4
A Gaussian Approximation Approach for Value of Information Analysis.信息价值分析的高斯逼近方法。
Med Decis Making. 2018 Feb;38(2):174-188. doi: 10.1177/0272989X17715627. Epub 2017 Jul 22.
7
Advantages and disadvantages of discrete-event simulation for health economic analyses.离散事件模拟在卫生经济分析中的优缺点。
Expert Rev Pharmacoecon Outcomes Res. 2016 Jun;16(3):327-9. doi: 10.1586/14737167.2016.1165608. Epub 2016 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验