Department of Psychology.
Department of Computer Science.
Psychotherapy (Chic). 2021 Jun;58(2):324-339. doi: 10.1037/pst0000362. Epub 2021 Mar 18.
Computerized natural language processing techniques can analyze psychotherapy sessions as texts, thus generating information about the therapy process and outcome and supporting the scaling-up of psychotherapy research. We used topic modeling to identify topics discussed in psychotherapy sessions and explored (a) which topics best identified clients' functioning and alliance ruptures and (b) whether changes in these topics were associated with changes in outcome. Transcripts of 873 sessions from 58 clients treated by 52 therapists were analyzed. Before each session, clients self-reported functioning and symptom level. After each session, therapists reported the extent of alliance rupture. Latent Dirichlet allocation was used to extract latent topics from psychotherapy textual data. Then a sparse multinomial logistic regression model was used to predict which topics best identified clients' functioning levels and the occurrence of alliance ruptures in psychotherapy sessions. Finally, we used multilevel growth models to explore the associations between changes in topics and changes in outcome. Session-based processing yielded a list of semantic topics. The model identified the labels above chance (65% to 75% accuracy). Change trajectories in topics were associated with change trajectories in outcome. The results suggest that topic models can exploit rich linguistic data within sessions to identify psychotherapy process and outcomes. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
计算机自然语言处理技术可以分析心理治疗会话文本,从而生成有关治疗过程和结果的信息,并支持心理治疗研究的扩展。我们使用主题建模来识别心理治疗会话中讨论的主题,并探讨了:(a) 哪些主题最能识别客户的功能和联盟破裂;(b) 这些主题的变化是否与结果的变化相关。对 52 名治疗师治疗的 58 名患者的 873 次会话的记录进行了分析。在每次治疗前,患者报告自己的功能和症状水平。每次治疗后,治疗师报告联盟破裂的程度。使用潜在狄利克雷分配法从心理治疗文本数据中提取潜在主题。然后,使用稀疏多项逻辑回归模型预测哪些主题最能识别患者的功能水平以及心理治疗会话中联盟破裂的发生。最后,我们使用多层次增长模型探讨主题变化与结果变化之间的关系。基于会话的处理产生了一系列语义主题。该模型可以识别出高于随机水平的标签(65%到 75%的准确率)。主题变化的轨迹与结果变化的轨迹相关。结果表明,主题模型可以利用会话中的丰富语言数据来识别心理治疗过程和结果。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。