Suppr超能文献

通过机器学习和自然语言处理实现多元文化取向评估的自动化。

Automating the assessment of multicultural orientation through machine learning and natural language processing.

作者信息

Goldberg Simon B, Tanana Michael, Stewart Shaakira Haywood, Williams Camille Y, Soma Christina S, Atkins David C, Imel Zac E, Owen Jesse

机构信息

Department of Counseling Psychology, University of Wisconsin-Madison.

Lyssn.io.

出版信息

Psychotherapy (Chic). 2024 Feb 1. doi: 10.1037/pst0000519.

Abstract

Recent scholarship has highlighted the value of therapists adopting a multicultural orientation (MCO) within psychotherapy. A newly developed performance-based measure of MCO capacities exists (MCO-performance task [MCO-PT]) in which therapists respond to video-based vignettes of clients sharing culturally relevant information in therapy. The MCO-PT provides scores related to the three aspects of MCO: cultural humility (i.e., adoption of a nonsuperior and other-oriented stance toward clients), cultural opportunities (i.e., seizing or making moments in session to ask about clients' cultural identities), and cultural comfort (i.e., therapists' comfort in cultural conversations). Although a promising measure, the MCO-PT relies on labor-intensive human coding. The present study evaluated the ability to automate the scoring of the MCO-PT transcripts using modern machine learning and natural language processing methods. We included a sample of 100 participants ( = 613 MCO-PT responses). Results indicated that machine learning models were able to achieve near-human reliability on the average across all domains (Spearman's ρ = .75, < .0001) and opportunity (ρ = .81, < .0001). Performance was less robust for cultural humility (ρ = .46, < .001) and was poorest for cultural comfort (ρ = .41, < .001). This suggests that we may be on the cusp of being able to develop machine learning-based training paradigms that could allow therapists opportunities for feedback and deliberate practice of some key therapist behaviors, including aspects of MCO. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

近期的学术研究强调了治疗师在心理治疗中采用多元文化取向(MCO)的价值。一种新开发的基于表现的MCO能力测量方法(MCO表现任务 [MCO-PT])已经存在,在该方法中,治疗师会对基于视频的客户在治疗中分享文化相关信息的 vignettes 做出反应。MCO-PT 提供与 MCO 的三个方面相关的分数:文化谦逊(即对客户采取非优越且以他人为导向的立场)、文化机会(即在治疗过程中抓住或创造询问客户文化身份的时刻)和文化舒适度(即治疗师在文化对话中的舒适度)。尽管是一种很有前景的测量方法,但 MCO-PT 依赖于劳动密集型的人工编码。本研究评估了使用现代机器学习和自然语言处理方法对 MCO-PT 成绩单进行自动评分的能力。我们纳入了 100 名参与者的样本(= 613 份 MCO-PT 反应)。结果表明,机器学习模型在所有领域(斯皮尔曼 ρ = 0.75,p <.0001)和机会方面(ρ = 0.81,p <.0001)平均能够达到接近人类的可靠性。文化谦逊方面的表现则不太稳健(ρ = 0.46,p <.001),而文化舒适度方面最差(ρ = 0.41,p <.001)。这表明我们可能即将能够开发基于机器学习的培训范式,为治疗师提供反馈机会,并对一些关键的治疗师行为进行刻意练习,包括 MCO 的各个方面。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)

相似文献

4
6
Cultural competence education for health professionals.
Cochrane Database Syst Rev. 2014 May 5;2014(5):CD009405. doi: 10.1002/14651858.CD009405.pub2.
7
Association of machine-learning-rated supportive counseling skills with psychotherapy outcome.
J Consult Clin Psychol. 2025 Feb;93(2):110-119. doi: 10.1037/ccp0000935.
10
The agreement of phonetic transcriptions between paediatric speech and language therapists transcribing a disordered speech sample.
Int J Lang Commun Disord. 2024 Sep-Oct;59(5):1981-1995. doi: 10.1111/1460-6984.13043. Epub 2024 Jun 8.

本文引用的文献

1
Machine-Learning-Based Prediction of Client Distress From Session Recordings.
Clin Psychol Sci. 2024 May;12(3):435-446. doi: 10.1177/21677026231172694. Epub 2023 Jun 1.
2
ChatGPT: the future of discharge summaries?
Lancet Digit Health. 2023 Mar;5(3):e107-e108. doi: 10.1016/S2589-7500(23)00021-3. Epub 2023 Feb 6.
3
Threat alert: The effect of outliers on the alliance-outcome correlation.
J Couns Psychol. 2023 Jan;70(1):81-89. doi: 10.1037/cou0000638. Epub 2022 Sep 29.
4
Just-in-Time Adaptive Interventions for Suicide Prevention: Promise, Challenges, and Future Directions.
Psychiatry. 2022 Winter;85(4):317-333. doi: 10.1080/00332747.2022.2092828. Epub 2022 Jul 18.
5
Mitigating Racial Bias in Machine Learning.
J Law Med Ethics. 2022;50(1):92-100. doi: 10.1017/jme.2022.13.
6
Automated quality assessment of cognitive behavioral therapy sessions through highly contextualized language representations.
PLoS One. 2021 Oct 22;16(10):e0258639. doi: 10.1371/journal.pone.0258639. eCollection 2021.
7
Automated evaluation of psychotherapy skills using speech and language technologies.
Behav Res Methods. 2022 Apr;54(2):690-711. doi: 10.3758/s13428-021-01623-4. Epub 2021 Aug 3.
8
Using topic models to identify clients' functioning levels and alliance ruptures in psychotherapy.
Psychotherapy (Chic). 2021 Jun;58(2):324-339. doi: 10.1037/pst0000362. Epub 2021 Mar 18.
9
Professionalism: microaggression in the healthcare setting.
Curr Opin Anaesthesiol. 2021 Apr 1;34(2):131-136. doi: 10.1097/ACO.0000000000000966.
10
A scoping review of machine learning in psychotherapy research.
Psychother Res. 2021 Jan;31(1):92-116. doi: 10.1080/10503307.2020.1808729. Epub 2020 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验