IEEE J Biomed Health Inform. 2022 Nov;26(11):5289-5297. doi: 10.1109/JBHI.2021.3066832. Epub 2022 Nov 10.
Computer-aided early diagnosis of Alzheimer's disease (AD) and its prodromal form mild cognitive impairment (MCI) based on structure Magnetic Resonance Imaging (sMRI) has provided a cost-effective and objective way for early prevention and treatment of disease progression, leading to improved patient care. In this work, we have proposed a novel computer-aided approach for early diagnosis of AD by introducing an explainable 3D Residual Attention Deep Neural Network (3D ResAttNet) for end-to-end learning from sMRI scans. Different from the existing approaches, the novelty of our approach is three-fold: 1) A Residual Self-Attention Deep Neural Network has been proposed to capture local, global and spatial information of MR images to improve diagnostic performance; 2) An explainable method using Gradient-based Localization Class Activation mapping (Grad-CAM) has been introduced to improve the interpretability of the proposed method; 3) This work has provided a full end-to-end learning solution for automated disease diagnosis. Our proposed 3D ResAttNet method has been evaluated on a large cohort of subjects from real datasets for two changeling classification tasks (i.e. Alzheimer's disease (AD) vs. Normal cohort (NC) and progressive MCI (pMCI) vs. stable MCI (sMCI)). The experimental results show that the proposed approach has a competitive advantage over the state-of-the-art models in terms of accuracy performance and generalizability. The explainable mechanism in our approach is able to identify and highlight the contribution of the important brain parts (e.g., hippocampus, lateral ventricle and most parts of the cortex) for transparent decisions.
基于结构磁共振成像 (sMRI) 的计算机辅助阿尔茨海默病 (AD) 及其前驱期轻度认知障碍 (MCI) 的早期诊断为疾病的早期预防和治疗进展提供了一种具有成本效益和客观的方法,从而改善了患者的护理。在这项工作中,我们提出了一种新的基于结构磁共振成像的计算机辅助 AD 早期诊断方法,该方法通过引入可解释的 3D 残差注意深度神经网络 (3D ResAttNet) 来实现从 sMRI 扫描的端到端学习。与现有的方法不同,我们的方法的新颖之处在于三个方面:1) 提出了一种残差自注意深度神经网络,用于捕获 MR 图像的局部、全局和空间信息,以提高诊断性能;2) 引入了一种基于梯度的局部激活映射 (Grad-CAM) 的可解释方法,以提高所提出方法的可解释性;3) 为自动化疾病诊断提供了完整的端到端学习解决方案。我们提出的 3D ResAttNet 方法已在来自真实数据集的大量对象上进行了评估,用于两个变体分类任务(即阿尔茨海默病 (AD) 与正常队列 (NC) 和进行性 MCI (pMCI) 与稳定 MCI (sMCI))。实验结果表明,所提出的方法在准确性性能和泛化能力方面优于最先进的模型。我们方法中的可解释机制能够识别和突出重要大脑部位(例如,海马体、侧脑室和大部分皮质)的贡献,从而做出透明的决策。
Neuroscience. 2022-5-21
Comput Methods Programs Biomed. 2023-2
J Neurosci Methods. 2019-5-25
Front Bioinform. 2025-8-20
IEEE Trans Emerg Top Comput Intell. 2025-4
Imaging Neurosci (Camb). 2024-7-12
Yearb Med Inform. 2024-8
Front Aging Neurosci. 2025-3-21
Diagnostics (Basel). 2025-3-4