文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于结构 MRI 的可解释性 3D 残差自注意力深度神经网络用于联合萎缩定位和阿尔茨海默病诊断

An Explainable 3D Residual Self-Attention Deep Neural Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI.

出版信息

IEEE J Biomed Health Inform. 2022 Nov;26(11):5289-5297. doi: 10.1109/JBHI.2021.3066832. Epub 2022 Nov 10.


DOI:10.1109/JBHI.2021.3066832
PMID:33735087
Abstract

Computer-aided early diagnosis of Alzheimer's disease (AD) and its prodromal form mild cognitive impairment (MCI) based on structure Magnetic Resonance Imaging (sMRI) has provided a cost-effective and objective way for early prevention and treatment of disease progression, leading to improved patient care. In this work, we have proposed a novel computer-aided approach for early diagnosis of AD by introducing an explainable 3D Residual Attention Deep Neural Network (3D ResAttNet) for end-to-end learning from sMRI scans. Different from the existing approaches, the novelty of our approach is three-fold: 1) A Residual Self-Attention Deep Neural Network has been proposed to capture local, global and spatial information of MR images to improve diagnostic performance; 2) An explainable method using Gradient-based Localization Class Activation mapping (Grad-CAM) has been introduced to improve the interpretability of the proposed method; 3) This work has provided a full end-to-end learning solution for automated disease diagnosis. Our proposed 3D ResAttNet method has been evaluated on a large cohort of subjects from real datasets for two changeling classification tasks (i.e. Alzheimer's disease (AD) vs. Normal cohort (NC) and progressive MCI (pMCI) vs. stable MCI (sMCI)). The experimental results show that the proposed approach has a competitive advantage over the state-of-the-art models in terms of accuracy performance and generalizability. The explainable mechanism in our approach is able to identify and highlight the contribution of the important brain parts (e.g., hippocampus, lateral ventricle and most parts of the cortex) for transparent decisions.

摘要

基于结构磁共振成像 (sMRI) 的计算机辅助阿尔茨海默病 (AD) 及其前驱期轻度认知障碍 (MCI) 的早期诊断为疾病的早期预防和治疗进展提供了一种具有成本效益和客观的方法,从而改善了患者的护理。在这项工作中,我们提出了一种新的基于结构磁共振成像的计算机辅助 AD 早期诊断方法,该方法通过引入可解释的 3D 残差注意深度神经网络 (3D ResAttNet) 来实现从 sMRI 扫描的端到端学习。与现有的方法不同,我们的方法的新颖之处在于三个方面:1) 提出了一种残差自注意深度神经网络,用于捕获 MR 图像的局部、全局和空间信息,以提高诊断性能;2) 引入了一种基于梯度的局部激活映射 (Grad-CAM) 的可解释方法,以提高所提出方法的可解释性;3) 为自动化疾病诊断提供了完整的端到端学习解决方案。我们提出的 3D ResAttNet 方法已在来自真实数据集的大量对象上进行了评估,用于两个变体分类任务(即阿尔茨海默病 (AD) 与正常队列 (NC) 和进行性 MCI (pMCI) 与稳定 MCI (sMCI))。实验结果表明,所提出的方法在准确性性能和泛化能力方面优于最先进的模型。我们方法中的可解释机制能够识别和突出重要大脑部位(例如,海马体、侧脑室和大部分皮质)的贡献,从而做出透明的决策。

相似文献

[1]
An Explainable 3D Residual Self-Attention Deep Neural Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI.

IEEE J Biomed Health Inform. 2022-11

[2]
A Single Model Deep Learning Approach for Alzheimer's Disease Diagnosis.

Neuroscience. 2022-5-21

[3]
Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis.

Brain Imaging Behav. 2021-10

[4]
Multi-task multi-level feature adversarial network for joint Alzheimer's disease diagnosis and atrophy localization using sMRI.

Phys Med Biol. 2022-4-1

[5]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[6]
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.

Neuroimage. 2020-3

[7]
VGG-TSwinformer: Transformer-based deep learning model for early Alzheimer's disease prediction.

Comput Methods Programs Biomed. 2023-2

[8]
A parallel attention-augmented bilinear network for early magnetic resonance imaging-based diagnosis of Alzheimer's disease.

Hum Brain Mapp. 2022-2-1

[9]
A hybrid Convolutional and Recurrent Neural Network for Hippocampus Analysis in Alzheimer's Disease.

J Neurosci Methods. 2019-5-25

[10]
Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI.

Br J Radiol. 2022-8-1

引用本文的文献

[1]
Novel deep learning for multi-class classification of Alzheimer's in disability using MRI datasets.

Front Bioinform. 2025-8-20

[2]
MssNet: An Efficient Spatial Attention Model for Early Recognition of Alzheimer's Disease.

IEEE Trans Emerg Top Comput Intell. 2025-4

[3]
Applications of interpretable deep learning in neuroimaging: A comprehensive review.

Imaging Neurosci (Camb). 2024-7-12

[4]
Regional deep atrophy: Using temporal information to automatically identify regions associated with Alzheimer's disease progression from longitudinal MRI.

Imaging Neurosci (Camb). 2024-9-18

[5]
TA-SSM net: tri-directional attention and structured state-space model for enhanced MRI-Based diagnosis of Alzheimer's disease and mild cognitive impairment.

BMC Med Imaging. 2025-7-31

[6]
An ensemble-based 3D residual network for the classification of Alzheimer's disease.

PLoS One. 2025-6-11

[7]
Recent Advancements in Neuroimaging-Based Alzheimer's Disease Prediction Using Deep Learning Approaches in e-Health: A Systematic Review.

Health Sci Rep. 2025-5-5

[8]
Alzheimer Disease Detection Studies: Perspective on Multi-Modal Data.

Yearb Med Inform. 2024-8

[9]
An imaging and genetic-based deep learning network for Alzheimer's disease diagnosis.

Front Aging Neurosci. 2025-3-21

[10]
Explainable Artificial Intelligence in Neuroimaging of Alzheimer's Disease.

Diagnostics (Basel). 2025-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索