Bao Sichen, Zheng Fengbo, Jiang Lifen, Wang Qiuyuan, Lyu Yong
College of Computer and Information Engineering, Tianjin Normal University, Tianjin, 300387, PR China.
Xinjiang Port Economic Development and Management Research Center, Yili Normal University, Yining, 835000, PR China.
BMC Med Imaging. 2025 Jul 31;25(1):309. doi: 10.1186/s12880-025-01836-5.
Early diagnosis of Alzheimer's disease (AD) and its precursor, mild cognitive impairment (MCI), is critical for effective prevention and treatment. Computer-aided diagnosis using magnetic resonance imaging (MRI) provides a cost-effective and objective approach. However, existing methods often segment 3D MRI images into 2D slices, leading to spatial information loss and reduced diagnostic accuracy. To overcome this limitation, we propose TA-SSM Net, a deep learning model that leverages tri-directional attention and structured state-space model (SSM) for improved MRI-based diagnosis of AD and MCI. The tri-directional attention mechanism captures spatial and contextual information from forward, backward, and vertical directions in 3D MRI images, enabling effective feature fusion. Additionally, gradient checkpointing is applied within the SSM to enhance processing efficiency, allowing the model to handle whole-brain scans while preserving spatial correlations. To evaluate our method, we construct a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI), consisting of 300 AD patients, 400 MCI patients, and 400 normal controls. TA-SSM Net achieved an accuracy of 90.24% for MCI detection and 95.83% for AD detection. The results demonstrate that our approach not only improves classification accuracy but also enhances processing efficiency and maintains spatial correlations, offering a promising solution for the diagnosis of Alzheimer's disease.
阿尔茨海默病(AD)及其前驱症状轻度认知障碍(MCI)的早期诊断对于有效预防和治疗至关重要。使用磁共振成像(MRI)的计算机辅助诊断提供了一种经济高效且客观的方法。然而,现有方法通常将3D MRI图像分割为2D切片,导致空间信息丢失和诊断准确性降低。为克服这一局限性,我们提出了TA-SSM Net,这是一种深度学习模型,它利用三向注意力和结构化状态空间模型(SSM)来改进基于MRI的AD和MCI诊断。三向注意力机制从3D MRI图像的前向、后向和垂直方向捕获空间和上下文信息,实现有效的特征融合。此外,在SSM中应用梯度检查点以提高处理效率,使模型能够处理全脑扫描并保持空间相关性。为评估我们的方法,我们从阿尔茨海默病神经影像倡议(ADNI)构建了一个数据集,包括300名AD患者、400名MCI患者和400名正常对照。TA-SSM Net在MCI检测中的准确率为90.24%,在AD检测中的准确率为95.83%。结果表明,我们的方法不仅提高了分类准确率,还提高了处理效率并保持了空间相关性,为阿尔茨海默病的诊断提供了一个有前景的解决方案。