文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Novel deep learning for multi-class classification of Alzheimer's in disability using MRI datasets.

作者信息

Shahid Sumaiya Binte, Kaikaus Maleeha, Kabir Md Hasanul, Yousuf Mohammad Abu, Azad A K M, Al-Moisheer A S, Alotaibi Naif, Alyami Salem A, Bhuiyan Touhid, Moni Mohammad Ali

机构信息

Institute of Information Technology, Jahangirnagar University, Savar, Dhaka, Bangladesh.

Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.

出版信息

Front Bioinform. 2025 Aug 20;5:1567219. doi: 10.3389/fbinf.2025.1567219. eCollection 2025.


DOI:10.3389/fbinf.2025.1567219
PMID:40910023
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12405159/
Abstract

INTRODUCTION: Alzheimer's disease (AD) is one of the most common neurodegenerative disabilities that often leads to memory loss, confusion, difficulty in language and trouble with motor coordination. Although several machine learning (ML) and deep learning (DL) algorithms have been utilized to identify Alzheimer's disease (AD) from MRI scans, precise classification of AD categories remains challenging as neighbouring categories share common features. METHODS: This study proposes transfer learning-based methods for extracting features from MRI scans for multi-class classification of different AD categories. Four transfer learning-based feature extractors, namely, ResNet152V2, VGG16, InceptionV3, and MobileNet have been employed on two publicly available datasets (i.e., ADNI and OASIS) and a Merged dataset combining ADNI and OASIS, each having four categories: Moderate Demented (MoD), Mild Demented (MD), Very Mild Demented (VMD), and Non Demented (ND). RESULTS: Results suggest the Modified ResNet152V2 as the optimal feature extractor among the four transfer learning methods. Next, by utilizing the modified ResNet152V2 as a feature extractor, a Convolutional Neural Network based model, namely, the 'IncepRes', is proposed by fusing the Inception and ResNet architectures for multiclass classification of AD categories. The results indicate that our proposed model achieved a standard accuracy of 96.96%, 98.35% and 97.13% for ADNI, OASIS, and Merged datasets, respectively, outperforming other competing DL structures. DISCUSSION: We hope that our proposed framework may automate the precise classifications of various AD categories, and thereby can offer the prompt management and treatment of cognitive and functional impairments associated with AD.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/a98903ac6ec9/fbinf-05-1567219-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/8595087c0ff8/fbinf-05-1567219-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/3208b49a304c/fbinf-05-1567219-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/8cd7a906f00f/fbinf-05-1567219-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/f05a0f47d758/fbinf-05-1567219-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/0e34643da676/fbinf-05-1567219-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/213ee5b8a78a/fbinf-05-1567219-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/b6fe7aad7343/fbinf-05-1567219-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/a98903ac6ec9/fbinf-05-1567219-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/8595087c0ff8/fbinf-05-1567219-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/3208b49a304c/fbinf-05-1567219-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/8cd7a906f00f/fbinf-05-1567219-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/f05a0f47d758/fbinf-05-1567219-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/0e34643da676/fbinf-05-1567219-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/213ee5b8a78a/fbinf-05-1567219-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/b6fe7aad7343/fbinf-05-1567219-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0633/12405159/a98903ac6ec9/fbinf-05-1567219-g008.jpg

相似文献

[1]
Novel deep learning for multi-class classification of Alzheimer's in disability using MRI datasets.

Front Bioinform. 2025-8-20

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

[4]
GAN-enhanced deep learning for improved Alzheimer's disease classification and longitudinal brain change analysis.

Front Med (Lausanne). 2025-6-17

[5]
Residual-Based Multi-Stage Deep Learning Framework for Computer-Aided Alzheimer's Disease Detection.

J Imaging. 2024-6-11

[6]
A machine learning approach for identifying anatomical biomarkers of early mild cognitive impairment.

PeerJ. 2024-12-13

[7]
Longitudinal structural MRI-based deep learning and radiomics features for predicting Alzheimer's disease progression.

Alzheimers Res Ther. 2025-8-7

[8]
Short-Term Memory Impairment

2025-1

[9]
A Cross-Modal Mutual Knowledge Distillation Framework for Alzheimer's Disease Diagnosis: Addressing Incomplete Modalities.

medRxiv. 2024-10-22

[10]
A Lightweight Deep Convolutional Neural Network Extracting Local and Global Contextual Features for the Classification of Alzheimer's Disease Using Structural MRI.

IEEE J Biomed Health Inform. 2025-3

本文引用的文献

[1]
A novel CNN architecture for accurate early detection and classification of Alzheimer's disease using MRI data.

Sci Rep. 2024-2-12

[2]
Alzheimer's disease diagnosis and classification using deep learning techniques.

PeerJ Comput Sci. 2022-12-20

[3]
Alzheimer Disease Classification through Transfer Learning Approach.

Diagnostics (Basel). 2023-2-20

[4]
Hippocampus Segmentation-Based Alzheimer's Disease Diagnosis and Classification of MRI Images.

Arab J Sci Eng. 2023-1-3

[5]
Particle Swarm Optimized Fuzzy CNN With Quantitative Feature Fusion for Ultrasound Image Quality Identification.

IEEE J Transl Eng Health Med. 2022

[6]
An MRI Scans-Based Alzheimer's Disease Detection via Convolutional Neural Network and Transfer Learning.

Diagnostics (Basel). 2022-6-23

[7]
Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.

IEEE J Transl Eng Health Med. 2022

[8]
Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI.

Br J Radiol. 2022-8-1

[9]
A classification of MRI brain tumor based on two stage feature level ensemble of deep CNN models.

Comput Biol Med. 2022-7

[10]
Brain MRI Analysis for Alzheimer's Disease Diagnosis Using CNN-Based Feature Extraction and Machine Learning.

Sensors (Basel). 2022-4-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索