Suppr超能文献

基于局部加权主成分分析的复杂分布参数系统多模态建模

Locally Weighted Principal Component Analysis-Based Multimode Modeling for Complex Distributed Parameter Systems.

作者信息

Xu Kangkang, Fan Bi, Yang Haidong, Hu Luoke, Shen Wenjing

出版信息

IEEE Trans Cybern. 2022 Oct;52(10):10504-10514. doi: 10.1109/TCYB.2021.3061741. Epub 2022 Sep 19.

Abstract

Global principal component analysis (PCA) has been successfully introduced for modeling distributed parameter systems (DPSs). In spite of the merits, this method is not feasible due to parameter variations and multiple operating domains. A novel multimode spatiotemporal modeling method based on the locally weighted PCA (LW-PCA) method is developed for large-scale highly nonlinear DPSs with parameter variations, by separating the original dataset into tractable subsets. This method implements the decomposition by making full use of the dependence among subset densities. First, the spatiotemporal snapshots are divided into multiple different Gaussian components by using a finite Gaussian mixture model (FGMM). Once the components are derived, a Bayesian inference strategy is then applied to calculate the posterior probabilities of each spatiotemporal snapshot belonging to each component, which will be regarded as the local weights of the LW-PCA method. Second, LW-PCA is adopted to calculate each locally weighted snapshot matrix, and the corresponding local spatial basis functions (SBFs) can be generated by the PCA method. Third, all the local temporal models are estimated using the extreme learning machine (ELM). Thus, the local spatiotemporal models can be produced with local SBFs and corresponding temporal model. Finally, the original system can be approximated using the sum form of each local spatiotemporal model. Unlike global PCA, which uses global SBFs to construct a global spatiotemporal model, LW-PCA approximates the original system by multiple local reduced SBFs. Numerical simulations verify the effectiveness of the developed multimode spatiotemporal model.

摘要

全局主成分分析(PCA)已成功引入用于分布式参数系统(DPS)建模。尽管有诸多优点,但由于参数变化和多个运行域,该方法并不可行。针对具有参数变化的大规模高度非线性DPS,通过将原始数据集分离为易于处理的子集,开发了一种基于局部加权PCA(LW - PCA)方法的新型多模式时空建模方法。该方法通过充分利用子集密度之间的依赖性来实现分解。首先,使用有限高斯混合模型(FGMM)将时空快照划分为多个不同的高斯分量。一旦得到这些分量,便应用贝叶斯推理策略来计算每个时空快照属于每个分量的后验概率,这些概率将被视为LW - PCA方法的局部权重。其次,采用LW - PCA计算每个局部加权快照矩阵,并通过PCA方法生成相应的局部空间基函数(SBF)。第三,使用极限学习机(ELM)估计所有局部时间模型。这样,利用局部SBF和相应的时间模型可以生成局部时空模型。最后,原始系统可以用每个局部时空模型的和形式来近似。与使用全局SBF构建全局时空模型的全局PCA不同,LW - PCA通过多个局部简化的SBF来近似原始系统。数值模拟验证了所开发的多模式时空模型的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验