Suppr超能文献

神经科学数据的贝叶斯功能主成分分析中的参数聚类

Parameter clustering in Bayesian functional principal component analysis of neuroscientific data.

作者信息

Margaritella Nicolò, Inácio Vanda, King Ruth

机构信息

School of Mathematics, University of Edinburgh, Edinburgh, UK.

出版信息

Stat Med. 2021 Jan 15;40(1):167-184. doi: 10.1002/sim.8768. Epub 2020 Oct 11.

Abstract

The extraordinary advancements in neuroscientific technology for brain recordings over the last decades have led to increasingly complex spatiotemporal data sets. To reduce oversimplifications, new models have been developed to be able to identify meaningful patterns and new insights within a highly demanding data environment. To this extent, we propose a new model called parameter clustering functional principal component analysis (PCl-fPCA) that merges ideas from functional data analysis and Bayesian nonparametrics to obtain a flexible and computationally feasible signal reconstruction and exploration of spatiotemporal neuroscientific data. In particular, we use a Dirichlet process Gaussian mixture model to cluster functional principal component scores within the standard Bayesian functional PCA framework. This approach captures the spatial dependence structure among smoothed time series (curves) and its interaction with the time domain without imposing a prior spatial structure on the data. Moreover, by moving the mixture from data to functional principal component scores, we obtain a more general clustering procedure, thus allowing a higher level of intricate insight and understanding of the data. We present results from a simulation study showing improvements in curve and correlation reconstruction compared with different Bayesian and frequentist fPCA models and we apply our method to functional magnetic resonance imaging and electroencephalogram data analyses providing a rich exploration of the spatiotemporal dependence in brain time series.

摘要

在过去几十年中,用于大脑记录的神经科学技术取得了非凡进展,产生了日益复杂的时空数据集。为了避免过度简化,人们开发了新的模型,以便能够在要求极高的数据环境中识别有意义的模式和新的见解。在此背景下,我们提出了一种名为参数聚类功能主成分分析(PCl-fPCA)的新模型,该模型融合了功能数据分析和贝叶斯非参数方法的思想,以实现对时空神经科学数据的灵活且计算可行的信号重建与探索。具体而言,我们在标准贝叶斯功能主成分分析框架内使用狄利克雷过程高斯混合模型对功能主成分得分进行聚类。这种方法捕捉了平滑时间序列(曲线)之间的空间依赖结构及其与时间域的相互作用,而无需对数据预先施加空间结构。此外,通过将混合从数据转移到功能主成分得分,我们获得了更通用的聚类过程,从而能够对数据进行更深入细致的洞察和理解。我们展示了一项模拟研究的结果,表明与不同的贝叶斯和频率主义功能主成分分析模型相比,该模型在曲线和相关性重建方面有所改进,并且我们将我们的方法应用于功能磁共振成像和脑电图数据分析,对大脑时间序列中的时空依赖性进行了丰富的探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验