Suppr超能文献

氧化还原修饰在阿尔奇霉素 A 的生物合成中发挥作用,使其能够形成关键药效团。

Redox Modifications in the Biosynthesis of Alchivemycin A Enable the Formation of Its Key Pharmacophore.

机构信息

State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.

Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan.

出版信息

J Am Chem Soc. 2021 Mar 31;143(12):4751-4757. doi: 10.1021/jacs.1c00516. Epub 2021 Mar 18.

Abstract

Redox enzymes play a critical role in transforming nascent scaffolds into structurally complex and biologically active natural products. Alchivemycin A (AVM, ) is a highly oxidized polycyclic compound with potent antimicrobial activity and features a rare 2-tetrahydro-4,6-dioxo-1,2-oxazine (TDO) ring system. The scaffold of AVM has previously been shown to be biosynthesized by a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) pathway. In this study, we present a postassembly secondary metabolic network involving six redox enzymes that leads to AVM formation. We characterize this complex redox network using gene deletions, biochemical assays, and one-pot enzymatic total synthesis. Importantly, we show that an FAD-dependent monooxygenase catalyzes oxygen insertion into an amide bond to form the key TDO ring in AVM, an unprecedented function of flavoenzymes. We also show that the TDO ring is essential to the antimicrobial activity of AVM, likely through targeting the β-subunit of RNA polymerase. As further evidence, we show that AvmK, a β-subunit of RNA synthase, can confer self-resistance to AVM via target modification. Our findings expand the repertoire of functions of flavoenzymes and provide insight into antimicrobial and biocatalyst development based on AVM.

摘要

氧化还原酶在将新生支架转化为结构复杂且具有生物活性的天然产物方面发挥着关键作用。Alchivemycin A (AVM) 是一种高度氧化的多环化合物,具有很强的抗菌活性,具有罕见的 2-四氢-4,6-二氧-1,2-恶嗪 (TDO) 环系统。AVM 的支架以前被证明是通过混合聚酮合酶-非核糖体肽合酶 (PKS-NRPS) 途径生物合成的。在这项研究中,我们提出了一个涉及六个氧化还原酶的后组装次级代谢网络,导致 AVM 的形成。我们使用基因缺失、生化测定和一锅酶总合成来表征这个复杂的氧化还原网络。重要的是,我们表明 FAD 依赖性单加氧酶催化酰胺键中的氧插入,形成 AVM 中的关键 TDO 环,这是黄素酶的前所未有的功能。我们还表明,TDO 环对 AVM 的抗菌活性至关重要,可能通过靶向 RNA 聚合酶的β亚基。作为进一步的证据,我们表明,RNA 合酶的β亚基 AvmK 可以通过靶标修饰赋予 AVM 自身抗性。我们的发现扩展了黄素酶功能的范围,并为基于 AVM 的抗菌和生物催化剂开发提供了深入的了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验