Suppr超能文献

一种与上皮性卵巢癌化疗反应相关的多基因甲基化预测模型。

A polygenic methylation prediction model associated with response to chemotherapy in epithelial ovarian cancer.

作者信息

Zhao Lanbo, Ma Sijia, Wang Linconghua, Wang Yiran, Feng Xue, Liang Dongxin, Han Lu, Li Min, Li Qiling

机构信息

Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.

Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, Hunan, China.

出版信息

Mol Ther Oncolytics. 2021 Feb 20;20:545-555. doi: 10.1016/j.omto.2021.02.012. eCollection 2021 Mar 26.

Abstract

To identify potential aberrantly differentially methylated genes (DMGs) correlated with chemotherapy response (CR) and establish a polygenic methylation prediction model of CR in epithelial ovarian cancer (EOC), we accessed 177 (47 chemo-sensitive and 130 chemo-resistant) samples corresponding to three DNA-methylation microarray datasets from the Gene Expression Omnibus and 306 (290 chemo-sensitive and 16 chemo-resistant) samples from The Cancer Genome Atlas (TCGA) database. DMGs associated with chemotherapy sensitivity and chemotherapy resistance were identified by several packages of R software. Pathway enrichment and protein-protein interaction (PPI) network analyses were constructed by Metascape software. The key genes containing mRNA expressions associated with methylation levels were validated from the expression dataset by the GEO2R platform. The determination of the prognostic significance of key genes was performed by the Kaplan-Meier plotter database. The key genes-based polygenic methylation prediction model was established by binary logistic regression. Among accessed 483 samples, 457 (182 hypermethylated and 275 hypomethylated) DMGs correlated with chemo resistance. Twenty-nine hub genes were identified and further validated. Three genes, anterior gradient 2 (AGR2), heat shock-related 70-kDa protein 2 (HSPA2), and acetyltransferase 2 (ACAT2), showed a significantly negative correlation between their methylation levels and mRNA expressions, which also corresponded to prognostic significance. A polygenic methylation prediction model (0.5253 cutoff value) was established and validated with 0.659 sensitivity and 0.911 specificity.

摘要

为了鉴定与化疗反应(CR)相关的潜在异常差异甲基化基因(DMG),并建立上皮性卵巢癌(EOC)中CR的多基因甲基化预测模型,我们获取了来自基因表达综合数据库的177个样本(47个化疗敏感和130个化疗耐药),对应三个DNA甲基化微阵列数据集,以及来自癌症基因组图谱(TCGA)数据库的306个样本(290个化疗敏感和16个化疗耐药)。通过R软件的几个包鉴定与化疗敏感性和化疗耐药相关的DMG。通过Metascape软件构建通路富集和蛋白质-蛋白质相互作用(PPI)网络分析。通过GEO2R平台从表达数据集中验证与甲基化水平相关的关键基因的mRNA表达。通过Kaplan-Meier绘图数据库确定关键基因的预后意义。通过二元逻辑回归建立基于关键基因的多基因甲基化预测模型。在获取的483个样本中,457个(182个高甲基化和275个低甲基化)DMG与化疗耐药相关。鉴定并进一步验证了29个枢纽基因。三个基因,前梯度2(AGR2)、热休克相关70 kDa蛋白2(HSPA2)和乙酰转移酶2(ACAT2),其甲基化水平与mRNA表达之间呈显著负相关,这也与预后意义相对应。建立了一个多基因甲基化预测模型(截断值为0.5253),并以0.659的敏感性和0.911的特异性进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/288e/7943968/be3666fb93fa/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验