Suppr超能文献

多视角结构数据的稀疏线性判别分析。

Sparse linear discriminant analysis for multiview structured data.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA.

Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

出版信息

Biometrics. 2022 Jun;78(2):612-623. doi: 10.1111/biom.13458. Epub 2021 Mar 30.

Abstract

Classification methods that leverage the strengths of data from multiple sources (multiview data) simultaneously have enormous potential to yield more powerful findings than two-step methods: association followed by classification. We propose two methods, sparse integrative discriminant analysis (SIDA), and SIDA with incorporation of network information (SIDANet), for joint association and classification studies. The methods consider the overall association between multiview data, and the separation within each view in choosing discriminant vectors that are associated and optimally separate subjects into different classes. SIDANet is among the first methods to incorporate prior structural information in joint association and classification studies. It uses the normalized Laplacian of a graph to smooth coefficients of predictor variables, thus encouraging selection of predictors that are connected. We demonstrate the effectiveness of our methods on a set of synthetic datasets and explore their use in identifying potential nontraditional risk factors that discriminate healthy patients at low versus high risk for developing atherosclerosis cardiovascular disease in 10 years. Our findings underscore the benefit of joint association and classification methods if the goal is to correlate multiview data and to perform classification.

摘要

同时利用来自多个来源(多视图数据)的数据优势的分类方法具有产生比两步法(关联后分类)更强大的发现的巨大潜力。我们提出了两种方法,稀疏综合判别分析(SIDA)和纳入网络信息的 SIDA(SIDANet),用于联合关联和分类研究。这些方法考虑了多视图数据之间的整体关联,以及在选择与关联并将主体最佳分离到不同类别中的判别向量时,每个视图内的分离。SIDANet 是首批在联合关联和分类研究中纳入先验结构信息的方法之一。它使用图的归一化拉普拉斯算子对预测变量的系数进行平滑,从而鼓励选择连接的预测变量。我们在一组合成数据集上展示了我们方法的有效性,并探索了它们在识别潜在的非传统风险因素方面的用途,这些因素可区分 10 年内发生动脉粥样硬化心血管疾病低风险和高风险的健康患者。如果目标是关联多视图数据并进行分类,我们的发现强调了联合关联和分类方法的益处。

相似文献

1
Sparse linear discriminant analysis for multiview structured data.多视角结构数据的稀疏线性判别分析。
Biometrics. 2022 Jun;78(2):612-623. doi: 10.1111/biom.13458. Epub 2021 Mar 30.
2
Multiview Uncorrelated Discriminant Analysis.多视图无相关判别分析。
IEEE Trans Cybern. 2016 Dec;46(12):3272-3284. doi: 10.1109/TCYB.2015.2502248. Epub 2015 Dec 3.
5
Interpretable deep learning methods for multiview learning.多视图学习的可解释深度学习方法。
BMC Bioinformatics. 2024 Feb 14;25(1):69. doi: 10.1186/s12859-024-05679-9.
6
Absent Multiview Semisupervised Classification.缺失多视图半监督分类。
IEEE Trans Cybern. 2024 Mar;54(3):1708-1721. doi: 10.1109/TCYB.2023.3241171. Epub 2024 Feb 9.
8
Incomplete-Data Oriented Multiview Dimension Reduction via Sparse Low-Rank Representation.基于稀疏低秩表示的面向不完整数据的多视图降维
IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6276-6291. doi: 10.1109/TNNLS.2018.2828699. Epub 2018 May 17.
10
Joint-structured-sparsity-based classification for multiple-measurement transient acoustic signals.基于联合结构稀疏性的多测量瞬态声学信号分类
IEEE Trans Syst Man Cybern B Cybern. 2012 Dec;42(6):1586-98. doi: 10.1109/TSMCB.2012.2196038. Epub 2012 May 15.

引用本文的文献

10
Bayesian Simultaneous Factorization and Prediction Using Multi-Omic Data.使用多组学数据的贝叶斯同时分解与预测
Comput Stat Data Anal. 2024 Sep;197. doi: 10.1016/j.csda.2024.107974. Epub 2024 Apr 30.

本文引用的文献

1
Joint association and classification analysis of multi-view data.多视图数据的联合关联与分类分析
Biometrics. 2022 Dec;78(4):1614-1625. doi: 10.1111/biom.13536. Epub 2021 Aug 22.
6
Canonical variate regression.典型变量回归
Biostatistics. 2016 Jul;17(3):468-83. doi: 10.1093/biostatistics/kxw001. Epub 2016 Feb 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验